Skip to main content
Log in

On the large σ-hyperconjugation in alkanes and alkenes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The conventional view that the σCC and σCH bonds in alkanes and unsaturated hydrocarbons are so highly localized that their non-steric interactions are negligible is scrutinized by the block-localized wavefunction (BLW) method. Even molecules considered conventionally to be “strain free” and “unperturbed” have surprisingly large and quite significant total σ-BLW-delocalization energies (DEs) due to their geminal and vicinal hyperconjugative interactions. Thus, the computed BLW-DEs (in kcal mol−1) for the antiperiplanar conformations of the n-alkanes (CNH2N+2, N = 1-10) range from 11.6 for ethane to 82.2 for n-decane and are 50.9 for cyclohexane and 91.0 for adamantane. Although σ-electron delocalization in unsaturated hydrocarbons usually is ignored, the σ-BLW-DEs (in kcal mol−1) are substantial, as exemplified by D 2h ethylene (9.0), triplet D 2d ethylene (16.4), allene (19.3), butadiene (19.0), hexatriene (28.3), benzene (28.1), and cyclobutadiene (21.1). While each individual geminal and vicinal hyperconjugative interaction between hydrocarbon σ-bonding and σ-antibonding orbitals tends to be smaller than an individual π conjugative interaction (e.g., 10.2 kcal mol−1 in anti-1,3-butadiene, the presence of many σ-hyperconjugative interactions (e.g., a total of 12 in anti-1,3-butadiene, see text), result in substantial total σ-stabilization energies (e.g., 19.0 kcal mol−1 for butadiene), which may surpass those from the π interactions. Although large in magnitude, σ-electron delocalization energies often are obscured by cancellation when two hydrocarbons are compared. Rather than being strain-free, cyclohexane, adamantane, and diamantane suffer from their increasing number of intramolecular 1,4-C…C repulsions resulting in elongated C–C bond lengths and reduced σ-hyperconjugation, compared to the (skew-free) antiperiplanar n-alkane conformers. Instead of being inconsequential, σ-bond interactions are important and merit consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Cf. Reference [23]. According to the definition given there, “gauche” is synonymous with a synclinal alignment of groups attached to adjacent atoms.

References

  1. Lewis GN (1916) J Am Chem Soc 38:762–785

    Article  CAS  Google Scholar 

  2. Thiel J (1899) J Ann Chem 306:87–142

    Article  Google Scholar 

  3. Mulliken RS (1939) J Chem Phys 7:339–352

    Article  CAS  Google Scholar 

  4. Wu JI, Schleyer P v R (2013) Pure Appl Chem 85:921–940

    Article  CAS  Google Scholar 

  5. Inagaki S, Ishitani Y, Kakefu T (1994) J Am Chem Soc 116:5954–5958

    Article  CAS  Google Scholar 

  6. Mo Y, Gao J (2007) Acc Chem Res 40:113–119

    Article  CAS  Google Scholar 

  7. Pophristic V, Goodman L (2001) Nature 411:565–568

    Article  CAS  Google Scholar 

  8. Bickelhaupt FM, Baerends EJ (2003) Angew Chem Int Ed 42:4183–4188

    Article  CAS  Google Scholar 

  9. Mo Y, Wu W, Song L, Lin M, Zhang Q, Gao J (2004) Angew Chem Int Ed 43:1986–1990

    Article  CAS  Google Scholar 

  10. Weinhold F (2003) Angew Chem Int Ed 42:4188–4194

    Article  CAS  Google Scholar 

  11. McKee WC, Schleyer P v R (2013) J Am Chem Soc 135:13008–13014

    Article  CAS  Google Scholar 

  12. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  13. Mo Y, Peyerimhoff SD (1998) J Chem Phys 109:1687–1697

    Article  CAS  Google Scholar 

  14. Mo Y, Song L, Lin Y (2007) J Phys Chem A 111:8291–8301

    Article  CAS  Google Scholar 

  15. Cappel D, Tullmann S, Krapp A, Frenking G (2005) Angew Chem Int Ed 44:3617–3620

    Article  CAS  Google Scholar 

  16. Fernández I, Frenking G (2006) Chem Eur J 12:3617–3629

    Article  Google Scholar 

  17. Hopffgarten MV, Frenking G (2012) For a recent review on the energy decomposition analysis (EDA) method. WIREs Comput Mol Sci 2:43–62

    Article  Google Scholar 

  18. Cooper DL (2002) Theoretical and computational chemistry. Elsevier, Amsterdam

  19. Gallup GA (2002) Valence bond methods: theory and applications. Cambridge University Press, New York

    Book  Google Scholar 

  20. Shaik SS, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley, Hoboken, NJ

    Google Scholar 

  21. Gleicher GL, Schleyer P v R (1967) J Am Chem Soc 89:582–593

    Article  CAS  Google Scholar 

  22. Allinger NL, Hirsch JA, Miller MA, Tyminski IJ, Van-Catledge FA (1968) J Am Chem Soc 90:1199–1210

    Article  CAS  Google Scholar 

  23. Schleyer P v R, Williams JE, Blanchard KR (1970) J Am Chem Soc 92:2377–2386

    Article  CAS  Google Scholar 

  24. Clark T, Knox TM, Mackle H, McKervey MA, Rooney JJ (1975) J Am Chem Soc 97:3835–3836

    Article  CAS  Google Scholar 

  25. Truong TN, Gordon MS (1986) J Am Chem Soc 108:1775–1778

    Article  CAS  Google Scholar 

  26. Dobbs KD, Hehre WJ (1986) Organometallics 5:2057–2061

    Article  CAS  Google Scholar 

  27. Schmidt MW, Truong PN, Gordon MS (1987) J Am Chem Soc 109:5217–5227

    Article  CAS  Google Scholar 

  28. Mulliken RS, Rieke CS, Brown WG (1941) J Am Chem Soc 63:41–56

    Article  CAS  Google Scholar 

  29. Rogers DW, Matsunaga N, Zavitsas AA, McLafferty FJ, Liebman JF (2003) Org Lett 5:2373–2375

  30. Rogers DW, Zavitsas AA, Matsunaga N (2010) J Chem Educ 87:1357–1359

  31. Schleyer P v R, Kost D (1988) J Am Chem Soc 110:2105–2109

    Article  CAS  Google Scholar 

  32. Song L, Mo Y, Zhang Q, Wu W (2005) J Comput Chem 26:514–521

    Article  CAS  Google Scholar 

  33. Song L, Chen Z, Ying F, Song J, Chen X, Su P, Mo Y, Zhang Q, Wu W (2012) Xiamen University, Xiamen 361005, China

  34. Stoll H, Wagenblast G, Preuss H (1980) Theor Chim Acta 57:169–178

    Article  CAS  Google Scholar 

  35. Mehler EL (1981) J Chem Phys 74:6298–6306

    Article  CAS  Google Scholar 

  36. Gianinetti E, Raimondi, Tornaghi E (1996) Int J Quantum Chem 60:157–166

    Article  CAS  Google Scholar 

  37. Lauvergnat D, Hiberty PC (1997) J Am Chem Soc 119:9478

    Article  CAS  Google Scholar 

  38. Bickelhaupt FM, Baerends EJ (2003) Angew Chem Int Ed 42:4183–4188

    Article  CAS  Google Scholar 

  39. Mo Y (2009) J Phys Chem A 113:5163–5169

    Article  CAS  Google Scholar 

  40. Linares M, Braïda B, Humbel S (2006) J Phys Chem A 110:2505–2509

    Article  CAS  Google Scholar 

  41. Linares M, Humbel S, Braïda B (2007) Faraday Discuss 135:273–283

    Article  CAS  Google Scholar 

  42. Mo Y, Hiberty PC, Schleyer P v R (2010) Theor Chem Acc 127:27–38

    Article  CAS  Google Scholar 

  43. Khaliullin RZ, Bell AT, Head-Gordon M (2006) J Chem Phys 124:204105

    Article  Google Scholar 

  44. Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M (2007) J Phys Chem A 111:8753–8765

    Article  CAS  Google Scholar 

  45. Shaik S, Shurki A, Danovich D, Hiberty PC (2001) Chem Rev 101:1501–1539

    Article  CAS  Google Scholar 

  46. Shaik SS, Hiberty PC, Lefour JM, Ohanessian G (1987) J Am Chem Soc 109:363–374

    Article  CAS  Google Scholar 

  47. Hiberty PC, Danovich D, Shurki A, Shaik S, Am J (1995) Chem Soc 117:7760–7768

    Article  CAS  Google Scholar 

  48. Mo Y, Schleyer P v R (2006) Chem Eur J 12:2009–2020

    Article  CAS  Google Scholar 

  49. Wu W, Ma B, Wu J, Schleyer P v R, Mo Y (2009) Chem Eur J 15:9730–9736

    Article  CAS  Google Scholar 

  50. Wu JI, Mo Y, Schleyer P v R, Fernández I (2012) J Chem Theory Comput 8:1280–1287

    Article  CAS  Google Scholar 

  51. Mo Y, Wu W, Song L, Lin M, Zhang Q, Gao J (2004) Angew Chem Int Ed 43:1986–1990

    Article  CAS  Google Scholar 

  52. Mo Y (2010) Nat Chem 2:666–671

    Article  CAS  Google Scholar 

  53. Wu JI, Mo Y, Evangelista FA, Schleyer P v R (2012) Chem Commun 48:8437–8439

    Article  CAS  Google Scholar 

  54. Wu JI, Fernandez I, Schleyer P v R (2013) J Am Chem Soc 135:315–321

    Article  CAS  Google Scholar 

  55. Steinmann SN, Jana DF, Wu JI, Schleyer P v R, Mo Y, Corminboeuf C (2009) Angew Chem Int Ed 48:9828–9833

    Article  CAS  Google Scholar 

  56. Jia J-F, Wu H-S, Mo Y (2012) J Chem Phys 136:144315

    Article  Google Scholar 

  57. Cohen N, Benson SW (1993) Chem Rev 93:2419–2438

    Article  CAS  Google Scholar 

  58. Computational Chemistry Comparison and Benchmark Database (http://cccbdb.nist.gov)

Download references

Acknowledgments

This work was supported by the US National Science Foundation grant CHE-105-5310 (YM), CHE-105-7466 (PvRS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Judy I-Chia Wu or Yirong Mo.

Additional information

This paper belongs to a Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J.IC., Wang, C., McKee, W.C. et al. On the large σ-hyperconjugation in alkanes and alkenes. J Mol Model 20, 2228 (2014). https://doi.org/10.1007/s00894-014-2228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2228-2

Keywords

Navigation