Skip to main content
Log in

A refined parameterization of the analytical Cd–Zn–Te bond-order potential

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This paper reports an updated parameterization for a CdTe bond order potential. The original potential is a rigorously parameterized analytical bond order potential for ternary the Cd–Zn–Te systems. This potential effectively captures property trends of multiple Cd, Zn, Te, CdZn, CdTe, ZnTe, and Cd1-xZnxTe phases including clusters, lattices, defects, and surfaces. It also enables crystalline growth simulations of stoichiometric compounds/alloys from non-stoichiometric vapors. However, the potential over predicts the zinc-blende CdTe lattice constant compared to experimental data. Here, we report a refined analytical Cd–Zn–Te bond order potential parameterization that predicts a better CdTe lattice constant. Characteristics of the second potential are given based on comparisons with both literature potentials and the quantum mechanical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a.b

Similar content being viewed by others

References

  1. Schlesinger TE, Toney JE, Yoon H, Lee EY, Brunett BA, Franks L, James RB (2001) Mater Sci Eng 32:103

    Article  Google Scholar 

  2. Kazmerski LL (2006) J Electron Spectrosc Relat Phenom 150:105

    Article  CAS  Google Scholar 

  3. Chou HC, Rohatgi A (1994) J Electron Mater 23:31

    Article  CAS  Google Scholar 

  4. Potter MDG, Cousins M, Durose K, Halliday DP (2000) J Mater Sci Mater Electron 11:525

    Article  CAS  Google Scholar 

  5. Szeles C (2004) Phys Status Solidi A 241:783

    Article  CAS  Google Scholar 

  6. Bolotnikov AE, Camarda GS, Carini GA, Cui Y, Li L, James RB (2007) Nucl Instrum Methods Phys Res A 579:125

    Article  CAS  Google Scholar 

  7. Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA (2012) Phys Rev B 85:115206

    Article  Google Scholar 

  8. Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA (2012) Phys Rev B 86:245203

    Article  Google Scholar 

  9. Zhou XW, Ward DK, Wong BM, Doty Phys FP (2012) Rev Lett 108:245503

    Article  CAS  Google Scholar 

  10. Chaves JJ, Ward DK, Wong BM, Doty FP, Cruz-Campa JL, Nielson GN, Gupta VP, Zubia D, McClure J, Zhou XW (2012) Phys Rev B 85:245316

    Article  Google Scholar 

  11. Zhou XW, Ward DK, Wong BM, Doty FP, Zimmerman JA, Nielson GN, Cruz-Campa JL, Gupta VP, Granata JE, Chavez JJ, Zubia D (2012) Phys Rev B 85:245302

    Article  Google Scholar 

  12. Zhou XW, Ward DK, Wong BM, Doty FP, Zimmerman JA (2012) J Phys Chem C 116:17563

    Article  CAS  Google Scholar 

  13. Plimpton S (1995) J Comput Phys 117:1

    Article  CAS  Google Scholar 

  14. Pettifor DG, Oleinik II (1999) Phys Rev B 59:8487

    Article  CAS  Google Scholar 

  15. Murdick DA, Zhou XW, Wadley HNG, Nguyen-Manh D, Drautz R, Pettifor DG (1999) Phys Rev B 59:8487

    Article  Google Scholar 

  16. Drautz R, Nguyen-Manh D, Murdick DA, Zhou XW, Wadley HNG, Pettifor DG (2004) TMS Lett 1:31

    CAS  Google Scholar 

  17. Oh J, Grein CH (1998) J Cryst Growth 193:241

    Article  CAS  Google Scholar 

  18. Borges DS, Rino JP (2005) Phys Rev B 72:014107

    Article  Google Scholar 

  19. Kanoun MB, Merad AE, Aourag H, Cibert J, Merad G (2003) Solid State Sci 5:1211

    Article  CAS  Google Scholar 

  20. Wang J, Rockett A (1991) Phys Rev B 43:12571

    Article  CAS  Google Scholar 

  21. Ward DK, Zhour XW, Wong BM, Doty FP, Zimmerman JA (2011) J Chem Phys 134:244703

    Article  CAS  Google Scholar 

  22. Barin I (1993) Thermochemical data of pures substances. Weinheim, VCH

    Google Scholar 

  23. Goodwin L, Skinner AJ, Pettifor DG (1989) Europhys Lett 9:701

    Article  CAS  Google Scholar 

  24. Albe K, Nordlund K, Nord J, Kuronen A (2002) Phys Rev B 66:035205

    Article  Google Scholar 

  25. Wolfram S (2004) The mathematica book, 5th edn. Wolfram Research, Champaign

    Google Scholar 

  26. Hestenes MR, Stiefel E (1952) J Res Natl Bur Stand 49:409

    Article  Google Scholar 

  27. Olsson DM, Nelson LS (1975) Technometrics 17:45

    Article  Google Scholar 

  28. Storn R, Price K (1997) J Glob Opt 11:341

    Article  Google Scholar 

  29. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220:671

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  31. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  32. Wong BM, Ye SH (2011) Phys Rev B 84:075115

    Article  Google Scholar 

  33. Donnay JDH, Ondik HM (1973) Crystal data, determinative tables, vol 2, 3rd edn. US Department of Commerce, National Bureau of Standards, and Joint Committee on Power Diffraction Standards, Washington DC

    Google Scholar 

  34. Agrawal BK, Agrawal S (1992) Phys Rev B 45:8321

    Article  CAS  Google Scholar 

  35. Rowe JM, Nicklow RM, Price DL, Zanio K (1974) Phys Rev B 10:671

    Article  CAS  Google Scholar 

  36. Grigoriev IS, Meilikhov EZ (1997) Handbook of physical quantities. CRC, New York

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nuclear Security Administration (NNSA)/Department of Energy (DOE) Office of Nonproliferation Research and Development, Proliferation Detection Program, Advanced Materials Portfolio. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE’s National Nuclear Security

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald K. Ward.

Appendix

Appendix

For the BOP formulation the total energy of a system is expressed as

$$ E=\frac{1}{2}{\displaystyle \sum_{i=1}^N{\displaystyle \sum_{j={i}_1}^{i_N}{\phi}_{ij}\left({r}_{ij}\right)}}-{\displaystyle \sum_{i=1}^N{\displaystyle \sum_{j={i}_1}^{i_N}{\beta}_{\sigma, ij}\left({r}_{ij}\right)}}\cdot {\varTheta}_{\sigma, ij}-{\displaystyle \sum_{i=1}^N{\displaystyle \sum_{j={i}_1}^{i_N}{\beta}_{\pi, ij}\left({r}_{ij}\right)}}\cdot {\varTheta}_{\pi, ij} $$
(4)

where ϕ ij(r ij) is a short-range two-body potential, β σ,ij(r ij) and β π,ij(r ij) are, respectively, σ and π bond integrals, Θ σ,ij and Θ π,ij are σ and π bond-orders. ϕ ij(r ij), β σ,ij(r ij), and β π,ij(r ij) are expressed in a general form as

$$ {\phi}_{ij}\left({r}_{ij}\right)={\phi}_{0, ij}\cdot {f}_{ij}{\left({r}_{ij}\right)}^{m_{ij}}\cdot {f}_{c, ij}\left({r}_{ij}\right) $$
(5)
$$ {\beta}_{\sigma, ij}\left({r}_{ij}\right)={\beta}_{\sigma, 0, ij}\cdot {f}_{ij}{\left({r}_{ij}\right)}^{n_{ij}}\cdot {f}_{c, ij}\left({r}_{ij}\right) $$
(6)
$$ {\beta}_{\pi, ij}\left({r}_{ij}\right)={\beta}_{\pi, 0, ij}\cdot {f}_{ij}{\left({r}_{ij}\right)}^{n_{ij}}\cdot {f}_{c, ij}\left({r}_{ij}\right) $$
(7)

where f ij(r ij) is a Goodwin-Skinner-Pettifor (GSP) radial function [23], and f c,ij(r ij) is a cutoff function (see [7] for formulation). Furthermore, Θ σ,ij is given by:

$$ {\varTheta}_{\sigma, ij}={\varTheta}_{s, ij}\left({\varTheta}_{\sigma, ij}^{\left(1/2\right)},{f}_{\sigma, ij}\right)\cdot \left[1-\left({f}_{\sigma, ij}-\frac{1}{2}\right)\cdot {k}_{\sigma, ij}\cdot \frac{\beta_{\sigma, ij}^2\left({r}_{ij}\right)\cdot {R}_{3\sigma, ij}}{\beta_{\sigma, ij}^2\left({r}_{ij}\right)+\frac{\beta_{\sigma, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\sigma}^i+{\beta}_{\sigma, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\sigma}^j}{2}+{\zeta}_2}\right] $$
(8)

Where, Φ i2σ and Φ j2σ are local variables arising from electron hop paths. In addition, Φ i2σ and Φ j2σ have the same formulation but are merely evaluated for atoms i and j, respectively. Since only the product of β 2σ,ij (r ij) ⋅ Φ i2σ is required for Eq. (8), the formulations are given as:

$$ {\beta}_{\sigma, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\sigma}^i={\displaystyle \sum_{\begin{array}{l}k={i}_1\\ {}k\ne j\end{array}}^{i_N}{g}_{\sigma, jik}^2\left({\theta}_{jik}\right)}\cdot {\beta}_{\sigma, ik}^2\left({r}_{ik}\right) $$
(9)

where θ jik is the bond angle at atom i spanning atoms j and k, and the function g σ,jik(θ jik) introduces angular-dependent contributions to the bonding resulting from the overlap of the hybridized atomic orbital. The three-body angular function is written as

$$ \begin{array}{ll}{g}_{\sigma, jik}\left({\theta}_{jik}\right)=\hfill & \frac{\left({b}_{\sigma, jik}-{g}_{0, jik}\right)\cdot {u}_{\sigma, jik}^2-\left({g}_{0, jik}+{b}_{\sigma, jik}\right)\cdot {u}_{\sigma, jik}}{2\cdot \left(1-{u}_{\sigma, jik}^2\right)}+\frac{g_{0, jik}+{b}_{\sigma, jik}}{2}\cdot \cos {\theta}_{jik}+\hfill \\ {}\hfill & \frac{g_{0, jik}-{b}_{\sigma, jik}+\left({g}_{0, jik}+{b}_{\sigma, jik}\right)\cdot {u}_{\sigma, jik}}{2\cdot \left(1-{u}_{\sigma, jik}^2\right)}\cdot { \cos}^2{\theta}_{jik}\hfill \end{array} $$
(10)

where g σ,jik, b σ,jik, and u σ,jik are three-body-dependent parameters. The half full valance bond order is given by:

$$ {\varTheta}_{\sigma, ij}^{\left(1/2\right)}=\frac{\beta_{\sigma, ij}\left({r}_{ij}\right)}{\sqrt{\beta_{\sigma, ij}^2\left({r}_{ij}\right)+{c}_{\sigma, ij}\cdot \left[{\beta}_{\sigma, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\sigma}^i+{\beta}_{\sigma, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\sigma}^j\right]+{\zeta}_1}} $$
(11)

Equation (8) also requires knowing β 2σ,ij (r ij) ⋅ R 3σ,ij given by

$$ {\beta}_{\sigma, ij}^2\left({r}_{ij}\right)\cdot {R}_{3\sigma, ij}={\displaystyle \sum_{\begin{array}{l}k={i}_1\\ {}k,j=n\end{array}}^{i_N}{g}_{\sigma}\left({\theta}_{jik}\right)\cdot }{g}_{\sigma}\left({\theta}_{ij k}\right)\cdot {g}_{\sigma}\left({\theta}_{ik j}\right)\cdot {\beta}_{\sigma, ik}\left({r}_{ik}\right)\cdot {\beta}_{\sigma, jk}\left({r}_{jk}\right) $$
(12)

The symmetric band-filling function is expressed as the continuous function

$$ {\varTheta}_{s, ij}\left({\varTheta}_{\sigma, ij}^{\left(1/2\right)},{f}_{\sigma, ij}\right)=\frac{\varTheta_0+{\varTheta}_1+S\cdot {\varTheta}_{\sigma, ij}^{\left(1/2\right)}-\sqrt{{\left({\varTheta}_0+{\varTheta}_1+S\cdot {\varTheta}_{\sigma, ij}^{\left(1/2\right)}\right)}^2-4\left(-\varepsilon \sqrt{1+{S}^2}+{\varTheta}_0\cdot {\varTheta}_1+S\cdot {\varTheta}_1\cdot {\varTheta}_{\sigma, ij}^{\left(1/2\right)}\right)}}{2} $$
(13)

where

$$ \left\{\begin{array}{l}\varepsilon ={10}^{-10}\hfill \\ {}{\varTheta}_0=15.737980\cdot {\left(\frac{1}{2}-\left|{f}_{\sigma, ij}-\frac{1}{2}\right|\right)}^{1.137622}\cdot {\left|{f}_{\sigma, ij}-\frac{1}{2}\right|}^{2.087779}\hfill \\ {}S=1.033201\cdot \left\{1- \exp \left[-22.180680\cdot {\left(\frac{1}{2}-\left|{f}_{\sigma, ij}-\frac{1}{2}\right|\right)}^{2.689731}\right]\right\}\hfill \\ {}{\varTheta}_1=2\cdot \left(\frac{1}{2}-\left|{f}_{\sigma, ij}-\frac{1}{2}\right|\right)\hfill \end{array}\right. $$
(14)

The π bond-order Θπ,ij used in Eq. (4) is expressed as

$$ \begin{array}{l}{\varTheta}_{\pi, ij}=\frac{a_{\pi, ij}\cdot {\beta}_{\pi, ij}\left({r}_{ij}\right)}{\sqrt{\beta_{\pi, ij}^2\left({r}_{ij}\right)+{c}_{\pi, ij}\cdot \left(\frac{\beta_{\pi, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\pi}^i+{\beta}_{\pi, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\pi}^j}{2}+\sqrt{\beta_{\pi, ij}^4\left({r}_{ij}\right)\cdot {\varPhi}_{4\pi }+{\zeta}_3}\right)+{\zeta}_4}}+\\ {}\frac{a_{\pi, ij}\cdot {\beta}_{\pi, ij}\left({r}_{ij}\right)}{\sqrt{\beta_{\pi, ij}^2\left({r}_{ij}\right)+{c}_{\pi, ij}\cdot \left(\frac{\beta_{\pi, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\pi}^i+{\beta}_{\pi, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\pi}^j}{2}-\sqrt{\beta_{\pi, ij}^4\left({r}_{ij}\right)\cdot {\varPhi}_{4\pi }+{\zeta}_3}+\sqrt{\zeta_3}\right)+{\zeta}_4}}\end{array} $$
(15)

where a π,ij and c π,ij are pair parameters, ζ3 and ζ4 are constants, and Φ i , Φ j , Φ are local variables.

The β 2π,ij (r ij) ⋅ Φ i2π,ij and β 4π,ij (r ij) ⋅ Φ 4π,ij terms used in Eq. (15) can be written as

$$ {\beta}_{\pi, ij}^2\left({r}_{ij}\right)\cdot {\varPhi}_{2\pi, ij}^i={\displaystyle \sum_{\begin{array}{l}k={i}_1\\ {}k\ne j\end{array}}^{i_N}\left[{p}_{\pi, i}\cdot {\beta}_{\sigma, ik}^2\left({r}_{ik}\right)\cdot { \sin}^2{\theta}_{jik}+\left(1+{ \cos}^2{\theta}_{jik}\right)\cdot {\beta}_{\pi, ik}^2\left({r}_{ik}\right)\right]} $$
(16)
$$ \begin{array}{l}{\beta}_{\pi, ij}^4\left({r}_{ij}\right)\cdot {\varPhi}_{4\pi, ij}=\frac{1}{4}{\displaystyle \sum_{\begin{array}{l}k={i}_1\\ {}k\ne j\end{array}}^{i_N}{ \sin}^4{\theta}_{jik}\cdot {\widehat{\beta}}_{ik}^4\left({r}_{ik}\right)}+\frac{1}{4}{\displaystyle \sum_{\begin{array}{l}k={j}_1\\ {}k\ne i\end{array}}^{j_N}{ \sin}^4{\theta}_{ij k}\cdot {\widehat{\beta}}_{jk}^4\left({r}_{jk}\right)}+\\ {}\frac{1}{2}{\displaystyle \sum_{\begin{array}{l}k={i}_1\\ {}k\ne j\end{array}}^{i_N}{\displaystyle \sum_{\begin{array}{l}k\prime =k+1\\ {}k\prime \ne j\end{array}}^{i_N}{ \sin}^2{\theta}_{jik}\cdot { \sin}^2{\theta}_{jik\hbox{'}}\cdot {\widehat{\beta}}_{ik}^2\left({r}_{ik}\right)\cdot {\widehat{\beta}}_{ik\hbox{'}}^2\left({r}_{ik\hbox{'}}\right)\cdot \cos \left(\varDelta {\psi}_{kk\prime}\right)}}+\\ {}\frac{1}{2}{\displaystyle \sum_{\begin{array}{l}k={j}_1\\ {}k\ne i\end{array}}^{j_N}{\displaystyle \sum_{\begin{array}{l}k\prime =k+1\\ {}k\prime \ne i\end{array}}^{j_N}{ \sin}^2{\theta}_{ij k}\cdot { \sin}^2{\theta}_{ij k\hbox{'}}\cdot {\widehat{\beta}}_{jk}^2\left({r}_{jk}\right)\cdot {\widehat{\beta}}_{jk\hbox{'}}^2\left({r}_{jk\hbox{'}}\right)\cdot \cos \left(\varDelta {\psi}_{kk\prime}\right)}}+\\ {}\frac{1}{2}{\displaystyle \sum_{\begin{array}{l}k\prime ={i}_1\\ {}k\prime \ne j\end{array}}^{i_N}{\displaystyle \sum_{\begin{array}{l}k={j}_1\\ {}k\ne i\end{array}}^{j_N}{ \sin}^2{\theta}_{jik\prime}\cdot { \sin}^2{\theta}_{ij k}\cdot {\widehat{\beta}}_{ik\hbox{'}}^2\left({r}_{ik\prime}\right)\cdot {\widehat{\beta}}_{jk}^2\left({r}_{jk}\right)\cdot \cos \left(\varDelta {\psi}_{kk\prime}\right)}}\end{array} $$
(17)

With

$$ {\widehat{\beta}}_{ik}^2\left({r}_{ik}\right)={p}_{\pi, i}\cdot {\beta}_{\sigma, ik}^2\left({r}_{ik}\right)-{\beta}_{\pi, ik}^2\left({r}_{ik}\right) $$
(18)

The β 4π,ij (r ij)  ⋅  Φ 4π,ij term contains four-body dihedral angles Δψ kk ′ important in π bonding, and can be calculated as

$$ \cos \left(\varDelta {\psi}_{kk\prime}\right)=\left\{\begin{array}{c}\hfill \frac{2{\left( \cos {\theta}_{kik\prime }- \cos {\theta}_{jik\prime}\cdot \cos {\theta}_{jik}\right)}^2}{{ \sin}^2{\theta}_{jik}\cdot { \sin}^2{\theta}_{jik\prime }}-1\begin{array}{cc}\hfill \hfill & \hfill or\hfill \end{array}\hfill \\ {}\hfill \frac{2{\left(\frac{\overrightarrow{ ik\prime}\cdot \overrightarrow{ jk}}{\left|\overrightarrow{ ik\prime}\right|\cdot \left|\overrightarrow{ jk}\right|}+ \cos {\theta}_{ijk}\cdot \cos {\theta}_{jik\prime}\right)}^2}{{ \sin}^2{\theta}_{ijk}\cdot { \sin}^2{\theta}_{jik\prime }}-1\hfill \end{array}\right. $$
(19)

For more detailed discussion and descriptions of all equations, please see [7].

The BOP parameterization of CdTe can be done independently for elemental Cd, elemental Te, and finally for CdTe. As stated above, the ability to capture crystalline growth is a critical component of a high-fidelity interatomic potential. In general, a more transferrable (flexible for many phases) potential is more difficult to parameterize for capturing crystalline growth because the properties of various phases vary more dramatically with changes of the parameters.

Since the refined parameterization only updates the portions of the potential containing CdTe interactions many of the parameters remain consistent with the previous potentials [7, 8]. This particular fitting process includes a total of 40 parameters. However, many parameters can be fixed prior to the fitting process. ζ 1-ζ 4,r 0, r c, r 1, r cut, c σ, a π, f σ, k σ, g 0 are all chosen before optimizing the remaining parameters (see [7] for details). This leaves 25 parameters to be determined.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, D.K., Zhou, X., Wong, B.M. et al. A refined parameterization of the analytical Cd–Zn–Te bond-order potential. J Mol Model 19, 5469–5477 (2013). https://doi.org/10.1007/s00894-013-2004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2004-8

Keywords

Navigation