Skip to main content
Log in

Theoretical investigation of the selectivity in intramolecular cyclizations of some 2’–aminochalcones to dihydroquinolin–8–ones and indolin–3–ones

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The selectivity of the intramolecular cyclizations of a series of 2’–aminochalcones was investigated with an approach that combines spin–polarized conceptual density functional theory and energy calculations. To that aim, condensed–to–atoms electrophilic Fukui functions, f + NN (r), were utilized as descriptors of the proclivity for nucleophilic attack of the NH2 group on the unsaturated α and β carbons. The results of our model are in excellent agreement with the experimental available evidence permitting us in all cases to predict when the cyclization processes led to the formation of 5–exo and 6–endo products.

Understanding the unexpected cyclizations of 2'aminochalcones

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Go ML, Wu X, Liu XL (2005) Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem 12(4):481–499

    Article  CAS  Google Scholar 

  2. Dimmock JR, Elias DW, Beazely MA, Kandepu NM (1999) Bioactivities of chalcones. Curr Med Chem 6(12):1125–1149

    CAS  Google Scholar 

  3. Katsori AM, Hadjipavlou-Litina D (2009) Chalcones in cancer: understanding their role in terms of qsar. Curr Med Chem 16(9):1062–1081

    Article  CAS  Google Scholar 

  4. Powers DG, Casebier DS, Fokas D, Ryan WJ, Troth JR, Coffen DL (1998) Automated parallel synthesis of chalcone-based screening libraries. Tetrahedron 54(16):4085–4096

    Article  CAS  Google Scholar 

  5. Chimenti F, Fioravanti R, Bolasco A, Chimenti P, Secci D, Rossi F, Yanez M, Orallo F, Ortuso F, Alcaro S (2009) Chalcones: a valid scaffold for monoamine oxidases inhibitors. J Med Chem 52(9):2818–2824

    Article  CAS  Google Scholar 

  6. Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42(2):125–137

    Article  CAS  Google Scholar 

  7. Ahmed N, van Lier JE (2007) Alumina supported-cecl3 center dot 7h(2)onai: an efficient catalyst for the cyclization f 2’–aminochalcones to the corresponding 2–aryl–2,3–dihydroquinolin–4(1h)–ones under solvent free conditions. Tetrahedron Lett 48(1):13–15

    Article  CAS  Google Scholar 

  8. Barros A, Silva AMS (2003) One-pot synthesis of 2-(2-hydroxyaryl)quinolines: reductive coupling reactions of 2’–hydroxy–2–nitrochalcones. Tetrahedron Lett 44(31):5893–5896

    Article  CAS  Google Scholar 

  9. Bhattacharya RN, Kundu P, Maiti G (2010) Antimony trichloride: an efficient and mild catalyst for cyclization of 2–aminochalcones to the corresponding 2–aryl-2,3-dihydroquinolin-4(1h)-ones. Synth Commun 40(4):476–481

    Article  CAS  Google Scholar 

  10. Ahmed N, Kumar H, Babu BV (2013) Intramolecular aminolysis of 2’–aminochalcone epoxides using inbr3 or bicl3 as efficient catalysts. Synth Commun 43(4):567–581

    Article  CAS  Google Scholar 

  11. Chelghoum M, Bahnous M, Bouraiou A, Bouacida S, Belfaitah A (2012) An efficient and rapid intramolecular aza-michael addition of 2’–aminochalcones using ionic liquids as recyclable reaction media. Tetrahedron Lett 53(42):4059–4061

    Article  CAS  Google Scholar 

  12. Kahriman N, Iskender NY, Yucel M, Yayli N, Demir E, Demirbag Z (2012) Microwave–assisted synthesis of 1,3’–diaza–flavanone/flavone and their alkyl derivatives with antimicrobial activity. J Heterocycl Chem 49(1):71–79

    Article  CAS  Google Scholar 

  13. Kumar D, Patel G, Mishra BG, Varma RS (2008) Eco–friendly polyethylene glycol promoted michael addition reactions of alpha, beta–unsaturated carbonyl compounds. Tetrahedron Lett 49(49):6974–6976

    Article  CAS  Google Scholar 

  14. Kumar P, Dhar DN (1995) Cyclization of 2’–aminochalcones with chlorosulfonyl isocyanate. Synth Commun 25(13):1933–1938

    Article  CAS  Google Scholar 

  15. Li J, Jin L, Yu C, Su W (2009) The cyclisation of 2’–aminochalcones using silica-supported yb(otf)(3) under solvent-free conditions. J Chem Res 3:170–173

    Article  Google Scholar 

  16. Rao VK, Rao MS, Kumar A (2011) Ytterbium(iii) triflate: an efficient and simple catalyst for isomerization of 2’–hydroxychalcone and 2’– aminochalcones in ionic liquid. J Heterocycl Chem 48(6):1356–1360

    Article  CAS  Google Scholar 

  17. Yang C, Fang L, Wu L, Yan F (2010) Synthesis of 2–aryl–2,3–dihydroquinolin–4(1h)–ones using wet cyanuric chloride under solvent-free conditions. Asian J Chem 22(8):6031–6034

    CAS  Google Scholar 

  18. Abonia R, Cuervo P, Insuasty B, Quiroga J, Nogueras M, Cobo J, Meier H, Lotero E (2008) An amberlyst–(r)–15 mediated synthesis of new functionalized dioxoloquinolinone derivatives. Open J Org Chem 2:26–34

    Article  CAS  Google Scholar 

  19. Baldwin JE (1976) Rules for ring-closure. J Chem Soc Chem Comm (18):734–736

  20. Carey FA, Sundberg RJ (1990) Advanced organic chemistry/Francis A. Carey and Richard J. Sundberg, 3rd edn. Plenum, New York

    Google Scholar 

  21. Abonia R, Cuervo P, Castillo J, Insuasty B, Quiroga J, Nogueras M, Cobo J (2008) Unexpected intramolecular cyclization of some 2’–aminochalcones to indolin–3–ones mediated by amberlyst (r)–15. Tetrahedron Lett 49(34):5028–5031

    Article  CAS  Google Scholar 

  22. Parr RG, Weitao Y (1994) Density–functional theory of atoms and molecules. Oxford University Press, Oxford

  23. Perez P, Chamorro E, Ayers PW (2008) Universal mathematical identities in density functional theory: results from three different spin–resolved representations. J Chem Phys 128(20):204108–204108

    Article  CAS  Google Scholar 

  24. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1873

    Article  CAS  Google Scholar 

  25. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20(1):129–154

    Article  CAS  Google Scholar 

  26. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106(6):2065–2091

    Article  CAS  Google Scholar 

  27. Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem Rev 107(9):PR46–PR74

    Article  CAS  Google Scholar 

  28. Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 2. Application to molecules where frontier molecular orbital theory fails. J Chem Theory Comput 3(2):375–389

    Article  CAS  Google Scholar 

  29. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101(5):520–534

    Article  CAS  Google Scholar 

  30. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122(9):2010–2018

    Article  CAS  Google Scholar 

  31. Berkowitz M (1987) Density functional–approach to frontier controlled reactions. J Am Chem Soc 109(16):4823–4825

    Article  CAS  Google Scholar 

  32. Yang WT, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci U S A 82(20):6723–6726

    Article  CAS  Google Scholar 

  33. Yang W, Parr RG, Pucci R (1984) Electron–density, kohn-sham frontier orbitals, and Fukui functions. J Chem Phys 81(6):2862–2863

    Article  CAS  Google Scholar 

  34. Chattaraj PK, Cedillo A, Parr RG (1995) Variational method for determining the Fukui function and chemical hardness of an electronic system. J Chem Phys 103(17):7645–7646

    Article  CAS  Google Scholar 

  35. Fukui K (1982) Role of frontier orbitals in chemical–reactions. Science 218(4574):747–754

    Article  CAS  Google Scholar 

  36. Inagaki S, Fujimoto H, Fukui K (1976) Orbital mixing rule. J Am Chem Soc 98(14):4054–4061

    Article  CAS  Google Scholar 

  37. Fukui K (1982) The role of frontier orbitals in chemical-reactions (nobel lecture). Angew Chem Int Ed Engl 21(11):801–809

    Article  Google Scholar 

  38. Fukui K, Koga N, Fujimoto H (1981) Interaction frontier orbitals. J Am Chem Soc 103(1):196–197

    Article  CAS  Google Scholar 

  39. Galvan M, Vela A, Gazquez JL (1988) Chemical-reactivity in spin-polarized density functional theory. J Phys Chem 92(22):6470–6474

    Article  CAS  Google Scholar 

  40. Ghanty TK, Ghosh SK (1994) Spin–polarized generalization of the concepts of electronegativity and hardness and the description of chemical–binding. J Am Chem Soc 116(9):3943–3948

    Article  CAS  Google Scholar 

  41. Galvan M, Vargas R (1992) Spin potential in kohn sham theory. J Phys Chem 96(4):1625–1630

    Article  CAS  Google Scholar 

  42. Chamorro E, De Proft F, Geerlings P (2005) Hardness and softness reactivity kernels within the spin-polarized density–functional theory. J Chem Phys 123(15):154104–154104

    Article  Google Scholar 

  43. Chamorro E, De Proft F, Geerlings P (2005) Generalized nuclear fukui functions in the framework of spin–polarized density–functional theory. J Chem Phys 123(8):084104–084104

    Article  CAS  Google Scholar 

  44. Chamorro E, Perez P (2005) Condensed–to–atoms electronic fukui functions within the framework of spin-polarized density–functional theory. J Chem Phys 123(11):114107–114107

    Article  Google Scholar 

  45. Chamorro E, Perez P, De Proft F, Geerlings P (2006) Philicity indices within the spin-polarized density-functional theory framework. J Chem Phys 124(4):044105–044105

    Article  CAS  Google Scholar 

  46. Chamorro E, Perez P, Duque M, De Proft F, Geerlings P (2008) Dual descriptors within the framework of spin-polarized density functional theory. J Chem Phys 129(6):064117–064117

    Article  CAS  Google Scholar 

  47. Pinter B, De Proft F, Van Speybroeck V, Hemelsoet K, Waroquier M, Chamorro E, Veszpremi T, Geerlings P (2007) Spin–polarized conceptual density functional theory study of the regioselectivity in ring closures of radicals. J Org Chem 72(2):348–356

    Article  CAS  Google Scholar 

  48. Dangate PS, Salunke CL, Akamanchi KG (2011) Regioselective oxidation of cholic acid and its 7 beta epimer by using o–iodoxybenzoic acid. Steroids 76(12):1397–1399

    Article  CAS  Google Scholar 

  49. Klaic L, Trippier PC, Mishra RK, Morimoto RI, Silverman RB (2011) Remarkable stereospecific conjugate additions to the hsp90 inhibitor celastrol. J Am Chem Soc 133(49):19634–19637

    Article  CAS  Google Scholar 

  50. Peng Z, Pal A, Han D, Wang S, Maxwell D, Levitzki A, Talpaz M, Donato NJ, Bornmann W (2011) Tyrphostin-like compounds with ubiquitin modulatory activity as possible therapeutic agents for multiple myeloma. Bioorg Med Chem 19(23):7194–7204

    Article  CAS  Google Scholar 

  51. Parr RG, Bartolotti L (1983) Some remarks on the density functional theory of few-electron systems. J Phys Chem 87(15):2810–2815

    Article  CAS  Google Scholar 

  52. Cedillo A (1994) A new representation for ground-states and its legendre transforms. Int J Quantum Chem Suppl 28:231–240

    Article  CAS  Google Scholar 

  53. Baekelandt BG, Cedillo A, Parr RG (1995) Reactivity indices and fluctuation formulas in density functional theory: isomorphic ensembles and a new measure of local hardness. J Chem Phys 103(19):8548–8556

    Article  CAS  Google Scholar 

  54. De Proft F, Ayers PW, Sen KD, Geerlings P (2004) On the importance pf the “density per particle” (shape function)” in the density functional theory. J Chem Phys 120(21):9969–9973

    Article  Google Scholar 

  55. Contreras RR, Fuentealba P, Galvan M, Perez P (1999) A direct evaluation of regional fukui functions in molecules. Chem Phys Lett 304(5–6):405–413

    Article  CAS  Google Scholar 

  56. Fuentealba P, Perez P, Contreras R (2000) On the condensed Fukui function. J Chem Phys 113(7):2544–2551

    Article  CAS  Google Scholar 

  57. Bulat FA, Chamorro E, Fuentealba P, Toro-Labbe A (2004) Condensation of frontier molecular orbital fukui functions. J Phys Chem A 108(2):342–349

    Article  CAS  Google Scholar 

  58. Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the fukui function. J Chem Phys A 109(14):3220–3224

    Article  CAS  Google Scholar 

  59. Ayers PW, Morrison RC, Roy RK (2002) Variational principles for describing chemical reactions: condensed reactivity indices. J Chem Phys 116(20):8731–8744

    Article  CAS  Google Scholar 

  60. Bultinck P, Fias S, Van Alsenoy C, Ayers PW, Carbo-Dorca R (2007) Critical thoughts on computing atom condensed Fukui functions. J Chem Phys 127(3):034102–034102

    Article  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

Download references

Acknowledgments

AR thanks Universidad Nacional for their financial support (grant 201010018545). EC and PP acknowledges the continuous support from Fondecyt (Chile), Grant Nos. 1100277 (EC) and 1100278 (PP), and from the Universidad Andres Bello (UNAB) through Grant No. DI-219-12/N (Núcleo CIMFQ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andres Reyes or Eduardo Chamorro.

Additional information

Fondecyt 1100277, Fondecyt 1100278, DI-UNAB 219-12/N (Nucleo CIMFQ), DIB-UNAL 201010016739

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes, A., Cuervo, P.A., Orozco, F. et al. Theoretical investigation of the selectivity in intramolecular cyclizations of some 2’–aminochalcones to dihydroquinolin–8–ones and indolin–3–ones. J Mol Model 19, 3611–3618 (2013). https://doi.org/10.1007/s00894-013-1893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1893-x

Keywords

Navigation