Skip to main content
Log in

Photodissociation of a ruthenium(II) arene complex and its subsequent interactions with biomolecules: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The piano-stool RuII arene complex [(η6-benz)Ru(bpm)(py)]2+ (benz = benzene, bpm = 2,2′-bipyrimidine, and py = pyridine), which is conventionally nonlabile (on a timescale and under conditions relevant for biological reactivity), can be activated by visible light to selectively photodissociate the monodentate ligand (py). In the present study, the aquation and binding of the photocontrolled ruthenium(II) arene complex [(η6-benz)Ru(bpm)(py)]2+ to various biomolecules are studied by density functional theory (DFT) and time-dependent DFT (TDDFT). Potential energy curves (PECs) calculated for the Ru–N (py) bonds in [(η6-benz)Ru(bpm)(py)]2+ in the singlet and triplet state give useful insights into the photodissociation mechanism of py. The binding energies of the various biomolecules are calculated, which allows the order of binding affinities among the considered nuleic-acid- or protein-binding sites to be discerned. The kinetics for the replacement of water in the aqua complex with biomolecules is also considered, and the results demonstrate that guanine is superior to other biomolecules in terms of coordinating with the RuII aqua adduct, which is in reasonable agreement with experimental observations.

Photoinduced aquation and biomolecules replacement reaction for the complex

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c
Fig. 5a–b
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

bpm:

2,2′-Bipyrimidine

Ru-bpm:

[(η6-benz)RuII(bpm)]2+

p-cym:

p-Cymene

benz:

Benzene

G:

Guanine

py:

Pyridine

A:

Adenine

met:

(CH3)2S

cys:

CH3SH

cym-Ru-py:

[(η6-p-cym)RuII(bpm)(py)]2+

Ru-py:

[(η6-benz)RuII(bpm)(py)]2+

Ru-H2O:

[(η6-benz)RuII(bpm)(H2O)]2+

Ru-G:

[(η6-benz)RuII(bpm)(G)]2+

Ru-A:

[(η6-benz)RuII(bpm)(A)]2+

Ru-hist:

[(η6-benz)RuII(bpm)(hist)]2+

Ru-cys:

[(η6-benz)RuII(bpm)(cys)]2+

Ru-met:

[(η6-benz)RuII(bpm)(met)]2+

hist:

5-Methyl-1H-imidazole

References

  1. Reedijk J (2009) Platinum anticancer coordination compounds: study of DNA binding inspires new drug design. Eur J Inorg Chem 1303–1312

  2. Reedijk J (2011) Increased understanding of platinum anticancer chemistry. Pure Appl Chem 83:1709–1719

    Article  CAS  Google Scholar 

  3. Bruijnincx PCA, Sadler PJ (2009) Controlling platinum, ruthenium, and osmium reactivity for anticancer drug design. Adv Inorg Chem 61:1–62

    Article  CAS  Google Scholar 

  4. Crespy D, Landfester K, Schubert US, Schiller A (2010) Potential photoactivated metallopharmaceuticals: from active molecules to supported drugs. Chem Commun 46:6651–6662

    Article  CAS  Google Scholar 

  5. Mackay FS, Woods JA, Heringova P, Kasparkova J, Pizarro AM, Moggach SA, Parsons S, Brabec V, Sadler PJ (2007) A potent cytotoxic photoactivated platinum complex. Proc Natl Acad Sci USA 104:20743–20748

    Google Scholar 

  6. Ronconi L, Sadler PJ (2011) Photoreaction pathways for the anticancer complex trans,trans,trans-[Pt(N3)2(OH)2(NH3)2]. Dalton Trans 40:262–268

    Google Scholar 

  7. Magennis SW, Habtemariam A, Novakova O, Henry JB, Meier S, Parsons S, Oswald IDH, Brabec V, Sadler PJ (2007) Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex. Inorg Chem 46:5059–5068

    Article  CAS  Google Scholar 

  8. Salassa L, Garino C, Salassa G, Nervi C, Gobetto R, Lamberti C, Gianolio D, Bizzarri R, Sadler PJ (2009) Ligand-selective photodissociation from [Ru(bpy)(4AP)4]2+: a spectroscopic and computational study. Inorg Chem 48:1469–1481

    Google Scholar 

  9. Morris RE, Aird RE, Murdoch PD, Chen HM, Cummings J, Hughes ND, Parsons S, Parkin A, Boyd G, Jodrell DI, Sadler PJ (2001) Inhibition of cancer cell growth by ruthenium(II) arene complexes. J Med Chem 44:3616–3621

    Article  CAS  Google Scholar 

  10. Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI (2002) In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer. Brit J Cancer 86:1652–1657

    Article  CAS  Google Scholar 

  11. Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem 48:4161–4171

    Article  CAS  Google Scholar 

  12. Chatterjee S, Kundu S, Bhattacharyya A, Hartinger CG, Dyson PJ (2008) The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways. J Biol Inorg Chem 13:1149–1155

    Article  CAS  Google Scholar 

  13. Fetzer L, Boff B, Ali M, Xiangjun M, Collin J-P, Sirlin C, Gaiddon C, Pfeffer M (2011) Library of second-generation cycloruthenated compounds and evaluation of their biological properties as potential anticancer drugs: passing the nanomolar barrier. Dalton Trans 40:8869

    Google Scholar 

  14. Atsumi M, González L, Daniel C (2007) Spectroscopy of Ru(II) polypyridyl complexes used as intercalators in DNA: towards a theoretical study of the light switch effect. J Photoch Photobio A 190:310–320

    Google Scholar 

  15. Bossert J, Daniel C (2008) Electronic absorption spectroscopy of [Ru(phen)2(bpy)]2+, [Ru(phen)2(dmbp)]2+, [Ru(tpy)(phen)(CH3CN)]2+ and [Ru(tpy)(dmp)(CH3CN)]2+: a theoretical study. Coord Chem Rev 252:2493–2503

    Google Scholar 

  16. Gossens C, Tavernelli I, Rothlisberger U (2008) DNA structural distortions induced by ruthenium-arene anticancer compounds. J Am Chem Soc 130:10921–10928

    Article  CAS  Google Scholar 

  17. Reedijk J (1999) Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 99:2499–2510

    Article  CAS  Google Scholar 

  18. Reedijk J (2003) New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci USA 100:3611–3616

    Google Scholar 

  19. Chen HM, Parkinson JA, Parsons S, Coxall RA, Gould RO, Sadler PJ (2002) Organometallic ruthenium(II) diamine anticancer complexes: arene-nucleobase stacking and stereospecific hydrogen-bonding in guanine adducts. J Am Chem Soc 124:3064–3082

    Google Scholar 

  20. Chen HM, Parkinson JA, Morris RE, Sadler PJ (2003) Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: novel recognition mechanisms. J Am Chem Soc 125:173–186

    Google Scholar 

  21. Novakova O, Chen HM, Vrana O, Rodger A, Sadler PJ, Brabec V (2003) DNA interactions of monofunctional organometallic ruthenium(II) antitumor complexes in cell-free media. Biochemistry 42:11544–11554

    Article  CAS  Google Scholar 

  22. Wang F, Xu J, Habtemariam A, Bella J, Sadler PJ (2005) Competition between glutathione and guanine for a ruthenium(II) arene anticancer complex: detection of a sulfenato intermediate. J Am Chem Soc 127:17734–17743

    Google Scholar 

  23. Petzold H, Xu JJ, Sadler PJ (2008) Metal and ligand control of sulfenate reactivity: arene ruthenium thiolato-mono-S-oxides. Angew Chem Int Edit 47:3008–3011

    Google Scholar 

  24. Wang FY, Habtemariam A, van der Geer EPL, Fernandez R, Melchart M, Deeth RJ, Aird R, Guichard S, Fabbiani FPA, Lozano-Casal P, Oswald IDH, Jodrell DI, Parsons S, Sadler PJ (2005) Controlling ligand substitution reactions of organometallic complexes: tuning cancer cell cytotoxicity. Proc Natl Acad Sci USA 102:18269–18274

    Google Scholar 

  25. Sadler PJ, Betanzos-Lara S, Salassa L, Habtemariam A (2009) Photocontrolled nucleobase binding to an organometallic Ru(II) arene complex. Chem Commun 6622–6624

  26. Barragán F, López-Senín P, Salassa L, Betanzos-Lara S, Habtemariam A, Moreno V, Sadler PJ, Marchán V (2011) Photocontrolled DNA binding of a receptor-targeted organometallic ruthenium(II) complex. J Am Chem Soc 133:14098–14108

    Google Scholar 

  27. Futera Z, Klenko J, Sponer JE, Sponer J, Burda JV (2009) Interactions of the “piano-stool” [ruthenium(II)(η6-arene)(en)Cl]+ complexes with water and nucleobases; ab initio and DFT study. J Comput Chem 30:1758–1770

    Google Scholar 

  28. Wang H, DeYonker NJ, Gao H, Ji L, Zhao C, Mao Z-W (2012) Mechanism of aquation and nucleobase binding of ruthenium(II) and osmium(II) arene complexes: a systematic comparison DFT study. J Organomet Chem 704:17–28

    Google Scholar 

  29. Pizarro AM, Sadler PJ (2009) Unusual DNA binding modes for metal anticancer complexes. Biochimie 91:1198–1211

    Article  CAS  Google Scholar 

  30. Chen HM, Parkinson JA, Novakova O, Bella J, Wang FY, Dawson A, Gould R, Parsons S, Brabec V, Sadler PJ (2003) Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers. Proc Natl Acad Sci USA 100:14623–14628

    Google Scholar 

  31. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Google Scholar 

  33. Dorcier A, Dyson PJ, Gossens C, Rothlisberger U, Scopelliti R, Tavernelli I (2005) Binding of organometallic ruthenium(II) and osmium(II) complexes to an oligonucleotide: a combined mass spectrometric and theoretical study. Organometallics 24:2114–2123

    Google Scholar 

  34. Wang HL, DeYonker NJ, Gao H, Tan CP, Zhang XT, Ji LN, Zhao CY, Mao ZW (2012) Aquation and dimerization of osmium(II) anticancer complexes: a density functional theory study. RSC Adv 2:436–446

    Article  CAS  Google Scholar 

  35. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Google Scholar 

  36. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Google Scholar 

  37. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235

    Google Scholar 

  38. Klamt A, Schüürmann G (1993) COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  39. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449

    Google Scholar 

  40. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time dependent density functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Google Scholar 

  41. Salassa L, Garino C, Salassa G, Gobetto R, Nervi C (2008) Mechanism of ligand photodissociation in photoactivable [Ru(bpy)2 L2]2+complexes: a density functional theory study. J Am Chem Soc 130:9590–9597

    Google Scholar 

  42. Salassa L, Garino C, Albertino A, Volpi G, Nervi C, Gobetto R, Hardcastle KI (2008) Computational and spectroscopic studies of new rhenium(I) complexes containing pyridylimidazo[1,5-a]pyridine ligands: charge transfer and dual emission by fine-tuning of excited states. Organometallics 27:1427–1435

    Google Scholar 

  43. O’Boyle NM, Tenderholt AL, Langner KM (2008) Software news and updates cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Google Scholar 

  44. Frisch MJ et al (2010) Gaussian 09, revision A.01. Gaussian Inc., Wallingford

  45. Zimmermann T, Zeizinger M, Burda JV (2005) Cisplatin interaction with cysteine and methionine, a theoretical DFT study. J Inorg Biochem 99:2184–2196

    Article  CAS  Google Scholar 

  46. Zimmermann T, Chval Z, Burda JV (2009) Cisplatin interaction with cysteine and methionine in aqueous solution: computational DFT/PCM study. J Phys Chem B 113:3139–3150

    Google Scholar 

  47. Deubel DV (2004) Factors governing the kinetic competition of nitrogen and sulfur ligands in cisplatin binding to biological targets. J Am Chem Soc 126:5999–6004

    Article  CAS  Google Scholar 

  48. Baik MH, Friesner RA, Lippard SJ (2003) Theoretical study of cisplatin binding to purine bases: why does cisplatin prefer guanine over adenine. J Am Chem Soc 125:14082–14092

    Google Scholar 

  49. Gossens C, Tavernelli I, Rothlisberger U (2009) Binding of organometallic ruthenium(II) anticancer compounds to nucleobases: a computational study. J Phys Chem A 113:11888–11897

    Google Scholar 

  50. Gkionis K, Platts JA, Hill JG (2008) Insights into DNA binding of ruthenium arene complexes: role of hydrogen bonding and pi stacking. Inorg Chem 47:3893–3902

    Google Scholar 

  51. Besker N, Coletti C, Marrone A, Re N (2007) Binding of antitumor ruthenium complexes to DNA and proteins: a theoretical approach. J Phys Chem B 111:9955–9964

    Google Scholar 

  52. Wang FY, Chen HM, Parkinson JA, Murdoch PD, Sadler PJ (2002) Reactions of a ruthenium(II) arene antitumor complex with cysteine and methionine. Inorg Chem 41:4509–4523

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 20725103, 20831006, 20821001, 20973204, 21172274, 21173273), the Guangdong Provincial Natural Science Foundation (no. 9351027501000003), and the National Basic Research Program of China (973, program no. 2007CB815306). It was partially sponsored by the high-performance grid computing platform of Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunyuan Zhao or Zong-Wan Mao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6497 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., DeYonker, N.J., Zhang, X. et al. Photodissociation of a ruthenium(II) arene complex and its subsequent interactions with biomolecules: a density functional theory study. J Mol Model 18, 4675–4686 (2012). https://doi.org/10.1007/s00894-012-1467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1467-3

Keywords

Navigation