Skip to main content

Advertisement

Log in

Electronic structure and PCA analysis of covalent and non-covalent acetylcholinesterase inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Hartree-Fock and density functional methods were used to analyze electronic and structural properties of known drugs to evaluate the influence of these data on acetylcholinesterase inhibition. The energies of the frontier orbitals and the distances between the more acidic hydrogen species were investigated to determine their contributions to the activity of a group of acetylcholinesterase inhibitors. Electrostatic potential maps indicated suitable sites for drugs-enzyme interactions. In this study, the structural, electronic and spatial properties of nine drugs with known inhibitory effects on acetylcholinesterase were examined. The data were obtained based on calculations at the B3LYP/6-31 + G(d,p) level. Multivariate principal components analysis was applied to 18 parameters to determine the pharmacophoric profile of acetylcholinesterase inhibitors. Desirable features for acetylcholinesterase inhibitor molecules include aromatic systems or groups that simulate the surface electrostatic potential of aromatic systems and the presence of a sufficient number of hydrogen acceptors and few hydrogen donors. PCA showed that electronic properties, including the HOMO-1 orbital energy, logP and aromatic system quantity, as well as structural data, such as volume, size and H-H distance, are the most significant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sugimoto H, Ogura H, Arai Y, Iimura Y, Yamanishi Y (2002) Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. Jap J Pharmacol 89(1):7–20

    Article  CAS  Google Scholar 

  2. Racchi M, Mazzucchelli M, Porrello E, Lanni C, Govoni S (2004) Acetylcholinesterase inhibitors: Novel activities of old molecules. Pharmacol Res 50(4):441–451

    Article  CAS  Google Scholar 

  3. Camps P, Muñoz-Torrero D (2002) Cholinergic drugs in pharmacotherapy of alzheimer´s disease. Mini Rev Med Chem 2(1):11–25

    Article  CAS  Google Scholar 

  4. Tezer N (2005) Ab initio molecular structure study of alkyl substitute analogues of alzheimer drug phenserine: Structure-activity relationships for acetyl- and butyrylcholinesterase inhibitory action. J Mol Struct THEOCHEM 714(2–3):133–136

    Article  CAS  Google Scholar 

  5. Haviv H, Wong DM, Silman I, Sussman JL (2007) Bivalent ligands derived from huperzine a as acetylcholinesterase inhibitors. Curr Top Med Chem 7(4):375–387

    Article  CAS  Google Scholar 

  6. Dvir H, Wong DM, Harel M, Barril X, Orozco M, Luque FJ, Munoz-Torrero D, Camps P, Rosenberry TL, Silman I, Sussman JL (2002) 3d structure of torpedo californica acetylcholinesterase complexed with huprine × at 2.1 angstrom resolution: Kinetic and molecular dynamic correlates. Biochemistry 41(9):2970–2981

    Article  CAS  Google Scholar 

  7. Patrick GL (2005) Medicinal chemistry, 3rd edn. New York, Oxford

    Google Scholar 

  8. Harel M, Schalk I, Ehretsabatier L, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I, Sussman JL (1993) Quaternary ligand-binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Nat Acad Sci USA 90:9031–9035

    Article  CAS  Google Scholar 

  9. Koellner G, Kryger G, Millard CB, Silman I, Sussman JL, Steiner T (2000) Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from torpedo californica. J Mol Biol 296(2):713–735

    Article  CAS  Google Scholar 

  10. Alcaro S, Scipione L, Ortuso F, Posca S, Rispoli V, Rotiroti D (2002) Molecular modeling and enzymatic studies of the interaction of a choline analogue and acetylcholinesterase. Bioorg Med Chem Lett 12(20):2899–2905

    Article  CAS  Google Scholar 

  11. Hurley MM, Wright JB, Lushington GH, White WE (2003) Quantum mechanics and mixed quantum mechanics/molecular mechanics simulations of model nerve agents with acetylcholinesterase. Theor Chem Acc 109(3):160–168

    CAS  Google Scholar 

  12. Zhang YK, Kua J, McCammon JA (2002) Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: An ab initio qm/mm study. J Am Chem Soc 124(35):10572–10577

    Article  CAS  Google Scholar 

  13. Bolognesi ML, Bartolini M, Cavalli A, Andrisano V, Rosini M, Minarini A, Melchiorre C (2004) Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues. J Med Chem 47(24):5945–5952

    Article  CAS  Google Scholar 

  14. de Paula AAN, Martins JBL, dos Santos ML, Nascente LD, Romeiro LAS, Areas T, Vieira KST, Gamboa NF, Castro NG, Gargano R (2009) New potential ache inhibitor candidates. Europ J Med Chem 44(9):3754–3759

    Article  Google Scholar 

  15. de Paula AAN, Martins JBL, Gargano R, dos Santos ML, Romeiro LAS (2007) Electronic structure calculations toward new potentially ache inhibitors. Chem Phys Lett 446(4–6):304–308

    Article  Google Scholar 

  16. Han DX, Yang P (2004) A new method for ranking tacrine derivatives binding affinities with acetylcholinesterase via finite difference thermodynamic integration. J Mol Struct THEOCHEM 668:25–28

    Article  CAS  Google Scholar 

  17. Nascimento ECM, Martins JBL, dos Santos ML, Gargano R (2008) Theoretical study of classical acetylcholinesterase inhibitors. Chem Phys Lett 458(4–6):285–289

    Article  CAS  Google Scholar 

  18. Senapati S, Cheng YH, McCammon JA (2006) In-situ synthesis of a tacrine-triazole-based inhibitor of acetylcholinesterase: Configurational selection imposed by steric interactions. J Med Chem 49(21):6222–6230

    Article  CAS  Google Scholar 

  19. Sippl W, Contreras JM, Parrot I, Rival YM, Wermuth CG (2001) Structure-based 3d qsar and design of novel acetylcholinesterase inhibitors. J Comput Aided Mol Des 15(5):395–410

    Article  CAS  Google Scholar 

  20. Tai KS (2004) Simulations on many scales: The synapse as an example. Pure Appl Chem 76(2):295–302

    Article  CAS  Google Scholar 

  21. Barak D, Ordentlich A, Kaplan D, Kronman C, Velan B, Shafferman A (2005) Lessons from functional analysis of ache covalent and noncovalent inhibitors for design of ad therapeutic agents. Chem Biol Interact 157:219–226

    Article  Google Scholar 

  22. Rydberg EH, Brumshtein B, Greenblatt HM, Wong DM, Shaya D, Williams LD, Carlier PR, Pang YP, Silman I, Sussman JL (2006) Complexes of alkylene-linked tacrine dimers with torpedo californica acetylcholinesterase: Binding of bis(5)-tacrine produces a dramatic rearrangement in the active-site gorge. J Med Chem 49(18):5491–5500

    Article  CAS  Google Scholar 

  23. Raves ML, Harel M, Pang YP, Silman I, Kozikowski AP, Sussman JL (1997) Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-huperzine a. Nat Struct Biol 4(1):57–63

    Article  CAS  Google Scholar 

  24. Sugimoto H, Yamanishi Y, Iimura Y, Kawakami Y (2000) Donepezil hydrochloride (e2020) and other acetylcholinesterase inhibitors. Curr Med Chem 7(3):303

    CAS  Google Scholar 

  25. Zhu WL, Gu JD, Jiang HL, Chen JZ, Liu DX, Lin MW, Chen KX, Ji RY, Cao Y (1998) Ir spectrum and normal mode analysis of the anti-alzheimer's disease natural product huperzine a: A quantum chemistry density-functional theory (dft) investigation. Sci China Ser B-Chem 41(6):616–622

    Article  CAS  Google Scholar 

  26. Zhu WL, Jiang HL, Chen JZ, Gu JD, Liu DX, Lin MW, Chen KX, Ji RY, Cao Y (1998) Characteristics of huperzine a structure in huperzine a acetylcholinesterase complex - a quantum chemistry study. Acta Chim Sin 56(3):233–237

    CAS  Google Scholar 

  27. Proctor GR, Harvey AL (2000) Synthesis of tacrine analogues and their structure-activity relationships. Curr Med Chem 7(3):295–302

    CAS  Google Scholar 

  28. Kaur J, Zhang MQ (2000) Molecular modelling and qsar of reversible acetylcholinesterase inhibitors. Curr Med Chem 7(3):273–294

    CAS  Google Scholar 

  29. Wlodek ST, Antosiewicz J, McCammon JA, Straatsma TP, Gilson MK, Briggs JM, Humblet C, Sussman JL (1996) Binding of tacrine and 6-chlorotacrine by acetylcholinesterase. Biopolymers 38(1):109–117

    Article  CAS  Google Scholar 

  30. Barril X, Orozco M, Luque FJ (2001) Towards improved acetylcholinesterase inhibitors: A structural and computational approach. Mini Reviews in Med Chem 1:255–266

    Article  CAS  Google Scholar 

  31. Greenblatt HM, Kryger G, Lewis T, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 angstrom resolution. FEBS Lett 463(3):321–326

    Article  CAS  Google Scholar 

  32. Herlem D, Martin MT, Thal C, Guillou C (2003) Synthesis and structure-activity relationships of open d-ring galanthamine analogues. Bioorg Med Chem Lett 13(14):2389–2391

    Article  CAS  Google Scholar 

  33. Kone S, Galland N, Graton J, Illien B, Laurence C, Guillou C, Le Questel JY (2006) Structural features of neutral and protonated galanthamine: A crystallographic database and computational investigation. Chem Phys 328(1–3):307–317

    Article  CAS  Google Scholar 

  34. Mizutani MY, Itai A (2004) J Med Chem 47:4818

    Article  CAS  Google Scholar 

  35. Afifi AAC (1990) Computer-aided multivariate analysis. Chapman & Hall, New York

    Google Scholar 

  36. Prado MAS, Garcia E, Martins JBL (2006) Theoretical study of cytosine-mg complex. Chem Phys Lett 418(1–3):264–267

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JA, Montgomery J, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Rev. D1. Gaussian Inc, Pittsburgh

    Google Scholar 

  38. Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with e2020 (aricept (r)): Implications for the design of new anti-alzheimer drugs. Structure 7(3):297–307

    Article  CAS  Google Scholar 

  39. Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I (2002) Kinetic and structural studies on the interaction of cholinesterases with the anti-alzheimer drug rivastigmine. Biochemistry 41(11):3555–3564

    Article  CAS  Google Scholar 

  40. Frisch A, II RDD, Keith TA, Millan J (2007) Gaussview4.1. Gaussian Inc, Wallingford

    Google Scholar 

  41. Jolliffe IT (2002) Principal component analysis. Springer, New York

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Ciência e Tecnologia dos Materiais em Nanotecnologia, and Financiadora de Estudos e Projetos for financial support and Laboratório de Química Computacional/Universidade de Brasília (LQC/UnB) for computation support. The authors would like to thank Dr. Maria L. dos Santos/Universidade de Brasília for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Érica Cristina Moreno Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nascimento, É.C.M., Martins, J.B.L. Electronic structure and PCA analysis of covalent and non-covalent acetylcholinesterase inhibitors. J Mol Model 17, 1371–1379 (2011). https://doi.org/10.1007/s00894-010-0838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0838-x

Keywords

Navigation