Skip to main content
Log in

Singular value decomposition analysis of the torsional angles of dopamine reuptake inhibitor GBR 12909 analogs: effect of force field and charges

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis of large, flexible molecules, such as the dopamine reuptake inhibitor GBR 12909 (1), is complicated by the fact that they can take on a wide range of closely-related conformations. The first step in the analysis is to classify the conformers into groups. Over 600 conformers each of a piperazine (2) and piperidine (3) analog of 1 were generated by random search conformational analysis using the Merck Molecular Force Field (MMFF94). Singular value decomposition (SVD) was used to group the conformers of 2 and 3 by the similarity of their non-ring torsional angles. SVD uncovered subtle differences in their conformer populations due to that fact that the conformers separate along different principal components, and ultimately to the fact that different torsional angles are the chief contributors to these components. The results were compared to our previous SVD analysis (Fiorentino, et al., Journal of Computational Chemistry, 2006, 27, 609-620) of conformer populations of 2 and 3 generated by the Tripos force field and Gasteiger-Hückel charges. Except for the dominant contribution of angle B3 to principal component 8 seen with both force fields, the angles which are chiefly responsible for the grouping of the conformers of 2 and 3 are different with both force fields. This illustrates that SVD is useful in identifying unique groupings of conformers in large data sets of flexible molecules—a first step in selecting representative conformers for 3D-QSAR modeling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14:299–302

    Article  CAS  Google Scholar 

  2. Singh S (2000) Chemistry, design, and structure-activity relationship of cocaine antagonists. Chem Rev 100:925–1024

    Article  CAS  Google Scholar 

  3. Dutta AK, Davis MC, Reith MEA (2001) Rational design and synthesis of novel 2, 5-disubstituted cis- and trans-piperidine derivatives exhibiting differential activity for the dopamine transporter. Bioorg Med Chem Lett 11:2337–2340

    Article  CAS  Google Scholar 

  4. Carroll FI (2003) 2002 Medicinal chemistry division award address: Monoamine transporters and opiod receptors. Targets for addiction therapy. J Med Chem 46:1775–1794

    Article  CAS  Google Scholar 

  5. Dutta AK, Zhang S, Kolhatkar RB, Reith MEA (2003) Dopamine transporter as target for drug development of cocaine dependence medications. Eur J Pharmacol 479:93–106

    Article  CAS  Google Scholar 

  6. Prisinzano T, Rice KC, Baumann MH, Rothman RB (2004) Development of neurochemical normalization ("agonist substitution") therapeutics for stimulant abuse: focus on the dopamine uptake inhibitor, GBR 12909. Curr Med Chem - CNS 4:47–59

    CAS  Google Scholar 

  7. Quirante J, Vila X, Bonjoch J, Kozikowski AP, Johnson KM (2004) 2, 3-Disubstituted 6-azabicyclo[3.2.1]octanes as novel dopamine transporter inhibitors. Bioorg Med Chem 12:1383–1391

    Article  CAS  Google Scholar 

  8. Cini N, Danieli E, Menchi G, Trabocchi A, Bottoncetti A, Raspanti S, Pupi A, Guarna A (2006) 3-Aza-6, 8-dioxabicyclo[3.2.1]octanes as new enantiopure heteroatom-rich tropane-like ligands of human dopamine transporter. Bioorg Med Chem 14:5110–5120

    Article  CAS  Google Scholar 

  9. Kim D-I, Deutsch HM, Ye X, Schweri MM (2007) Synthesis and pharmacology of site-specific cocaine abuse treatment agents: Restricted rotation analogues of methylphenidate. J Med Chem 50:2718–2731

    Article  CAS  Google Scholar 

  10. Mishra M, Kolhatkar R, Zhen J, Parrington I, Reith MEA, Dutta AK (2008) Further structural optimization of cis-(6-benzhydryl-piperidin-3-yl)-benzylamine and 1, 4-diazabicyclo[3.3.1]nonane derivatives by introducing an exocyclic hydroxyl group: Interaction with dopamine, serotonin, and norepinephrine transporters. Bioorg Med Chem 16:2769–2778

    Article  CAS  Google Scholar 

  11. Jin C, Navarro HA, Carroll FI (2008) Synthesis and receptor binding properties of 2β-alkynyl and 2β-(1, 2, 3-triazol)substituted 3β-(substituted phenyl)tropane derivatives. Bioorg Med Chem 16:5529–5535

    Article  CAS  Google Scholar 

  12. Nielsen S, Pedersen CM, Hansen SG, Petersen MD, Sinning S, Wiborg O, Jensen HH, Bols M (2009) An extended study of dimeric phenyl tropanes. Bioorg Med Chem 17:4900–4909

    Article  CAS  Google Scholar 

  13. Manning JR, Sexton T, Childers SR, Davies HML (2009) 1-Naphthyl and 4-indolyl arylalkylamines as selective monoamine reuptake inhibitors. Bioorg Med Chem Lett 19:58–61

    Article  CAS  Google Scholar 

  14. Carroll FI, Blough BE, Abraham P, Mills AC, Holleman JA, Wolckenhauer SA, Decker AM, Landavazo A, McElroy KT, Navarro HA, Gatch MB, Forster MJ (2009) Synthesis and biological evaluation of bupropion analogues as potential pharmacotherapies for cocaine addiction. J Med Chem 52:6768–6781

    Article  CAS  Google Scholar 

  15. Carroll FI, Gao Y, Rahman MA, Abrams P, Parham K, Lewin AH, Boja JW, Kuhar MJ (1991) Synthesis, ligand binding, QSAR, and CoMFA study of 3β-(p-substituted phenyl)tropane-2β-carboxylic acid methyl esters. J Med Chem 34:2719–2725

    Article  CAS  Google Scholar 

  16. Carroll FI, Mascarella SW, Kuzemko MA, Gao Y, Abraham P, Lewin AH, Boja JW, Kuhar MJ (1994) Synthesis, ligand binding, and QSAR (CoMFA and classical) study of 3β-(3′-substituted phenyl)-, 3β-(4′-substituted phenyl)-, and 3β-(3′, 4′-disubstituted phenyl)tropane-2β-carboxylic acid methyl esters. J Med Chem 37:2865–2873

    Article  CAS  Google Scholar 

  17. Lieske SF, Yang B, Eldefrawi ME, MacKerell JAD, Wright J (1998) (-)-3ß-Substituted ecgonine methyl esters as inhibitors for cocaine binding and dopamine uptake. J Med Chem 41:864–876

    Article  CAS  Google Scholar 

  18. Zhu N, Harrison A, Trudell ML, Klein-Stevens CL (1999) QSAR and CoMFA study of cocaine analogs: Crystal and molecular structure of (-)-cocaine hydrochloride and N-methyl-3β-(p-fluorophenyl)tropane-2β-carboxylic acid methyl ester. Struct Chem 10:91–103

    Article  CAS  Google Scholar 

  19. Newman AH, Izenwasser S, Robarge MJ, Kline RH (1999) CoMFA study of novel phenyl ring-substituted 3α-(diphenylmethoxy)tropane analogues at the dopamine transporter. J Med Chem 42:3502–3509

    Article  CAS  Google Scholar 

  20. Robarge MJ, Agoston GE, Izenwasser S, Kopajtic T, George C, Katz JL, Newman AH (2000) Highly selective chiral N-substituted 3α-[bis(4′-fluorophenyl)methoxy]tropane analogues for the dopamine transporter: Synthesis and Comparative Molecular Field Analysis. J Med Chem 43:1085–1093

    Article  CAS  Google Scholar 

  21. Davies HML, Gilliatt V, Kuhn LA, Saikali E, Ren P, Hammond PS, Sexton GJ, Childers SR (2001) Synthesis of 2β-Acyl-3β-(substituted naphthyl)-8-azabicyclo[3.2.1] octanes and their binding affinities at dopamine and serotonin transport sites. J Med Chem 44:1509–1515

    Article  CAS  Google Scholar 

  22. Kulkarni SS, Newman AH, Houlihan WJ (2002) Three-dimensional quantitative structure-activity relationships of mazindol analogues at the dopamine transporter. J Med Chem 45:4119–4127

    Article  CAS  Google Scholar 

  23. Kulkarni SS, Grundt P, Kopajtic T, Katz JL, Newman AH (2004) Structure-activity relationships at monoamine transporters for a series of N-substituted 3α-(bis[4-fluorophenyl]methoxy)tropanes: Comparative Molecular Field Analysis, synthesis, and pharmacological evaluation. J Med Chem 47:3388–3398

    Article  CAS  Google Scholar 

  24. Petukhov PA, Zhang J, Wang CZ, Ye YP, Johnson KM, Kozikowski AP (2004) Synthesis, molecular modeling, and biological studies of novel piperidine-based analogues of cocaine: Evidence of unfavorable interactions proximal to the 3α-position of the piperidine ring. J Med Chem 47:3009–3018

    Article  CAS  Google Scholar 

  25. Yuan H, Kozikowski AP, Petukhov RA (2004) CoMFA study of piperidine analogues of cocaine at the dopamine transporter: exploring the binding mode of the 3α-substituent of the piperidine ring using pharmacophore-based flexible alignment. J Med Chem 47:6137–6143

    Article  CAS  Google Scholar 

  26. Yuan H, Petukhov PA (2006) Improved 3D-QSAR CoMFA of the dopamine transporter blockers with multiple conformations using the genetic algorithm. Bioorg Med Chem Lett 16:6267–6272

    Article  CAS  Google Scholar 

  27. Dutta AK, Xu C, Reith ME (1996) Structure-Activity relationship studies of novel 4-[2-[bis(4-fluorophenyl)methoxy]ethyl]-1-(3-phenylpropyl)piperidine analogs: Synthesis and biological evaluation at the dopamine and serotonin transporter sites. J Med Chem 39:749–756

    Article  CAS  Google Scholar 

  28. Dutta AK, Meltzer PC, Madras BK (1993) Positional importance of the nitrogen atom in novel piperidine analogs of GBR 12909: Affinity and selectivity for the dopamine transporter. Med Chem Res 3:209–222

    CAS  Google Scholar 

  29. Matecka D, Lewis D, Rothman RB, Dersch CM, Wojnicki FHE, Glowa JR, De Vries AC, Pert A, Rice KC (1997) Heteroaromatic analogs of 1-[2-(diphenylmethoxy)ethyl]- and 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-3-phenylpropyl)piperazines (GBR 12935 and GBR 12909) as high-affinity dopamine reuptake inhibitors. J Med Chem 40:705–716

    Article  CAS  Google Scholar 

  30. Bradley A, Izenwasser S, Wade D, Klein-Stevens C, Zhu N, Trudell ML (2002) Synthesis and dopamine transporter binding affinities of 3α -Benzyl-8-(diarylmethoxyethyl)-8-azabicyclo[3.2.1]octanes. Bioorg Med Chem Lett 12:2387–2390

    Article  CAS  Google Scholar 

  31. Prisinzano T, Greiner E, Johnson IEM, Dersch CM, Marcus J, Partilla JS, Rothman RB, Jacobson AE, Rice KC (2002) Piperidine analogues of GBR 12909: High affinity ligands for the dopamine transporter. J Med Chem 45:4371–4374

    Article  CAS  Google Scholar 

  32. Bradley A, Izenwasser S, Wade D, Cararas S, Trudell ML (2003) Synthesis and dopamine transporter selective 3-{2-(Diarylmethoxyethylidene)}-8-alkylaryl-8-azabicyclo[3.2.1]octanes. Bioorg Med Chem Lett 13:629–632

    Article  CAS  Google Scholar 

  33. Kimura M, Masuda T, Yamada K, Mitani M, Kubota N, Kawakatsu N, Kishii K, Inazu M, Kiuchi Y, Oguchi K, Namiki T (2003) Syntheses of novel diphenyl piperazine derivatives and their activities as inhibitors of dopamine uptake in the central nervous system. Bioorg Med Chem Lett 11:1621–1630

    Article  CAS  Google Scholar 

  34. Greiner E, Prizinzano T, Johnson IEM, Dersch CM, Marcus J, Partilla JS, Rothman RB, Jacobson AE, Rice KC (2003) Structure-activity relationship studies of highly selective inhibitors of the dopamine transporter: N-Benzylpiperidine analogues of 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine. J Med Chem 46:1465–1469

    Article  CAS  Google Scholar 

  35. Ghorai SK, Cook CD, Davis MC, Venkataraman SK, Beardsley PM, Reith MEA, Dutta AK (2003) High affinity hydroxypiperidine analogues of 4-(2-benzhydroxyloxyethyl)-1-(4-fluorobenzyl)piperadine for the dopamine transporter: Stereospecific interactions in vitro and in vivo. J Med Chem 46:1220–12208

    Article  CAS  Google Scholar 

  36. Kolhatkar RB, Ghorai SK, George C, Reith MEA, Dutta AK (2003) Interaction of cis-(6-benzhydrylpiperidin-3-yl)benzylamine analogues with monoamine transporters: Structure-activity relationship study of structurally-constrained 3, 6-disubstituted piperidine analogues of (2, 2-Diphenylethyl)-[1-(4-fluorobenzyl)piperidin-4-ylmethyl]amine. J Med Chem 46:2205–2215

    Article  CAS  Google Scholar 

  37. Kolhatkar RB, Cook CD, Ghorai SK, Deschamps JR, Beardsley PM, Reith MEA, Dutta AK (2004) Further structurally constrained analogues of cis-(6-benzhydrylpiperidin-3-yl)benzylamine with elucidation of bioactive conformation: Discovery of 1, 4-diazabicyclo[3.3.1]nonane derivatives and evaluation of their biological properties for the monoamine transporters. J Med Chem 47:5101–5113

    Article  CAS  Google Scholar 

  38. Zhang S, Zhen J, Reith MEA, Dutta AK (2004) Structural requirements for 2, 4- and 3, 6-disubstituted pyran biomimetics of cis-(6-benzhydryl-piperidin-3-yl)-benzylamine compounds to interact with monoamine transporters. Bioorg Med Chem 12:6301–6315

    Article  CAS  Google Scholar 

  39. Greiner E, Boos TL, Prisinzano TE, De Martino MG, Zeglis B, Dersch CM, Marcus J, Partilla JS, Rothman RB, Jacobson AE, Rice KC (2006) Design and synthesis of promiscuous high-affinity monoamine transporter ligands: unraveling transporter selectivity. J Med Chem 49:1766–1772

    Article  CAS  Google Scholar 

  40. Boos TL, Greiner E, Calhoun J, Prisinzano TE, Nightingale B, Dersch CM, Rothman RB, Jacobson AE, Rice KC (2006) Structure-activity relationships of substituted N-benzyl piperidines in the GBR series: Synthesis of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl) piperidine, an allosteric modulator of the serotonin transporter. Bioorg Med Chem 14:3967–3973

    Article  CAS  Google Scholar 

  41. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative Molecular Field Analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  42. Kim KH, Greco G, Novellino E (1998) A critical review of recent CoMFA applications. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in Drug Design: Recent Advances. Kluwer Academic, Dordrecht, pp 257–315

    Google Scholar 

  43. Gilbert KM, Boos TL, Dersch CM, Greiner E, Jacobson AE, Lewis D, Matecka D, Prisinzano TE, Zhang Y, Rothman RB, Rice KC, Venanzi CA (2007) DAT/SERT selectivity of flexible GBR 12909 analogs Modeled using 3D-QSAR methods. Bioorg Med Chem 15:1146–1159

    Article  CAS  Google Scholar 

  44. Shenkin PS, McDonald DQ (1994) Cluster analysis of molecular conformations. J Comput Chem 15:899–916

    Article  CAS  Google Scholar 

  45. Feher M, Schmidt JM (2001) Metric and multidimensional scaling: Efficient tools for clustering molecular conformations. J Chem Inf Comput Sci 41:346–353

    CAS  Google Scholar 

  46. Feher M, Schmidt JM (2003) Fuzzy clustering as a means of selecting representative conformers and molecular alignments. J Chem Inf Comput Sci 43:810–818

    CAS  Google Scholar 

  47. Dave RN, Sen S (2002) Robust fuzzy clustering of relational data. IEEE Trans Fuzzy Syst 10:713–727

    Article  Google Scholar 

  48. Jackson JE, (1990) A user’s guide to principal component analysis. John Wiley and Sons, New York.

  49. Gilbert KM, Venanzi CA (2006) Hierarchical clustering analysis of flexible GBR 12909 dialkyl piperazine and piperidine analogs. J Comput-Aided Mol Des 20:209–225

    Article  CAS  Google Scholar 

  50. Misra M, Banerjee A, Davé RN, Venanzi CA (2005) Novel feature extraction technique for fuzzy relational clustering of a flexible dopamine reuptake inhibitor. J Chem Inf Model 45:610–623

    Article  CAS  Google Scholar 

  51. Banerjee A, Misra M, Pai D, Shih L-Y, Woodley R, Lu X-J, Srinivasan AR, Olson WK, Dave RN, Venanzi CA (2007) Feature extraction using molecular planes for fuzzy relational clustering of a flexible dopamine reuptake inhibitor. J Chem Inf Model 47:2216–2227

    Article  CAS  Google Scholar 

  52. Fiorentino A, Pandit D, Gilbert KM, Misra M, Dios R, Venanzi CA (2006) Singular value decomposition of torsional angles of analogs of the dopamine reuptake inhibitor GBR 12909. J Comput Chem 27:609–620

    Article  CAS  Google Scholar 

  53. Saunders M (1987) Stochastic exploration of molecular mechanics energy surfaces. J Am Chem Soc 109:3150–3152

    Article  CAS  Google Scholar 

  54. Clark M, Cramer RD III, van Opdenbosch N (1989) Validation of the general purpose Tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  55. Pandit D, Misra M, Gilbert KM, Skawinski WJ, Venanzi CA (2010) Conformational analysis of piperazine and piperidine analogs of GBR 12909: stochastic approach to evaluating the effects of force fields and solvent. J Mol Model. doi:10.1007/s00894-010-0712-x

  56. Halgren TA (1996) Merck Molecular Force Field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  57. Halgren TA (1996) Merck Molecular Force Field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17:520–552

    Article  CAS  Google Scholar 

  58. Halgren TA (1996) Merck Molecular Force Field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553

    Article  CAS  Google Scholar 

  59. Halgren TA (1996) Merck Molecular Force Field. IV. Conformational energies and geometries for MMFF94. J Comput Chem 17:587–615

    CAS  Google Scholar 

  60. Beckers MLM, Buydens LMC (1998) Multivariate analysis of a data matrix containing A-DNA and B-DNA dinucleoside monophosphate steps: Multidimensional Ramachandran plots for nucleic acids. J Comput Chem 19:695–715

    Article  CAS  Google Scholar 

  61. Reijmers TH, Wehrens R, Buydens LMC (2001) Circular effects in representations of an RNA nucleotide Data set in relation with principal component analysis. Chemom Intell Lab Syst 56:61–71

    Article  CAS  Google Scholar 

  62. Wall ME, Rechtesteiner A, Rocha LM (2003) Singular Value decomposition and principal component analysis. In: Berrar DP, Dubitsky W, Granzow M (eds) A practical approach to microarray data analysis, Kluwer,Dordrecht, pp 91-109

Download references

Acknowledgments

This work was funded in part by a grant DA018153 to C.A.V. from the National Institutes of Health. The authors would like to thank Jeelum Naik, Eun Kim, and Anuj Kumar for assistance with the calculations, and Kathleen Gilbert for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Venanzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandit, D., Fiorentino, A., Bindra, S. et al. Singular value decomposition analysis of the torsional angles of dopamine reuptake inhibitor GBR 12909 analogs: effect of force field and charges. J Mol Model 17, 1343–1351 (2011). https://doi.org/10.1007/s00894-010-0826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0826-1

Keywords

Navigation