Skip to main content
Log in

The local electron affinity for non-minimal basis sets

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A technique known as intensity filtering is introduced to select valence-like virtual orbitals for calculating the local electron affinity, EAL. Intensity filtering allows EAL to be calculated using semiempirical molecular orbital techniques that include polarisation functions. Without intensity filtering, such techniques yield spurious EAL values that are dominated by the polarisation functions. As intensity filtering should also be applicable for ab initio or density functional theory calculations with large basis sets, it also makes EAL available for these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Clark T, Byler KG, de Groot MJ (2008) In: Hicks MG, Kettner C (eds) Molecular interactions—bringing chemistry to life. Proceedings of the International Beilstein Workshop, Bozen, Italy, May 15–19, 2006. Logos, Berlin, pp 129–146

  2. Politzer P, Murray JS (1991) Rev Comput Chem 2:273–312

    Google Scholar 

  3. Ehresmann B, Martin B, Horn AHC, Clark T (2003) J Mol Model 9:342–347

    Article  CAS  Google Scholar 

  4. Politzer PA, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) J Chem Phys 95:6699–6704

    Article  CAS  Google Scholar 

  5. Politzer PA, Murray JS, Concha MC (2002) Int J Quant Chem 88:19–27

    Article  CAS  Google Scholar 

  6. Hussein W, Walker CJ, Peralta-Inga Z, Murray JS (2001) Int J Quant Chem 82:160–169

    Article  CAS  Google Scholar 

  7. Murray JS, Abu-Awwad F, Politzer PA (2000) Theochem 501–502:241

    Article  Google Scholar 

  8. Ehresmann B, de Groot MJ, Alex A, Clark T (2004) J Chem Inf Comput Sci 44:658–668

    CAS  Google Scholar 

  9. Clark T (2004) J Mol Graph Model 22:519–525

    Article  CAS  Google Scholar 

  10. Ehresmann B, de Groot MJ, Clark T (2005) J Chem Inf Model 45:1053–1060

    Article  CAS  Google Scholar 

  11. Clark T, Ford MG, Essex JW, Richards WG, Ritchie DW (2006) QSAR and molecular modelling in rational design of bioactive molecules. In: Aki E, Yalcin I (eds) EuroQSAR 2004 proceedings. CADD&DS, Istanbul, Turkey, pp 536–537

  12. Kramer C, Beck B, Kriegl JM, Clark T (2008) Chem Med Chem 3:254–265

    CAS  Google Scholar 

  13. Jakobi A-J, Mauser H, Clark T (2008) J Mol Model 14:547–558

    Article  CAS  Google Scholar 

  14. Hennemann H, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, Göller AH (2009) Chem Med Chem 4:657–669

    CAS  Google Scholar 

  15. Manallack DT (2008) J Mol Model 14:797–805

    Article  CAS  Google Scholar 

  16. Mulliken RS (1934) J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  17. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  18. Pearson RG (1991) Chemtracts Inorg Chem 3:317–333

    CAS  Google Scholar 

  19. Parr RG, Yang W (1989) Density functional theory in atoms and molecules. Oxford University Press, New York

    Google Scholar 

  20. Fukui K, Yonezawa T, Nagata C (1957) J Chem Phys 26:831–841

    Article  CAS  Google Scholar 

  21. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  22. Reid AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  Google Scholar 

  23. Clark T, Stewart JJP (2010) In: Reimers JR (ed) Computational methods for large systems: electronic structure approaches for biotechnology and nanotechnology. Wiley, New York (in press)

    Google Scholar 

  24. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907

    Article  CAS  Google Scholar 

  25. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4907–4917

    Article  CAS  Google Scholar 

  26. Thiel W (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 1599–1604

    Google Scholar 

  27. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  28. Holder AJ (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 8–11

    Google Scholar 

  29. Stewart JJP (1989) J Comp Chem 10:209

    Article  CAS  Google Scholar 

  30. Stewart JJP (1989) J Comp Chem 10:221

    Article  CAS  Google Scholar 

  31. Stewart JJP (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, p 2080

    Google Scholar 

  32. Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2003) J Mol Model 9:408–414

    Article  CAS  Google Scholar 

  33. Winget P, Clark T (2005) J Mol Model 11:439–456

    Article  CAS  Google Scholar 

  34. Kayi H, Clark T (2007) J Mol Model 13:965–979

    Article  CAS  Google Scholar 

  35. Kayi H, Clark T (2009) J Mol Model 15:295–308

    Article  CAS  Google Scholar 

  36. Kayi H, Clark T (2009) J Mol Model 15:1253–1269. doi:10.1007/s00894-009-0489-y

    Google Scholar 

  37. Kayi H, Clark T (2009) J Mol Model 15 (in press). Online first. doi: 10.1007/s00894-009-0503-4

  38. Orchin M, Jaffé HH (1971) Symmetry, orbitals, and spectra. Wiley, New York

    Google Scholar 

  39. Cramer C, Beck B, Clark T (2010) J Chem Inf Model 50 (in press)

  40. ParaSurf’10, Cepos InSilico Ltd, Kempston, UK, to be released on July 1st 2010; www.ceposinsilico.com

Download references

Acknowledgements

I am grateful for constructive criticism and many stimulating discussions with Jane Murray, Peter Politzer and Felipe Bulat. This work was supported by the Deutsche Forschungsgemeinschaft as part of SFB583 "Redox-Active Metal Complexes: Control of Reactivity via Molecular Architecture".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, T. The local electron affinity for non-minimal basis sets. J Mol Model 16, 1231–1238 (2010). https://doi.org/10.1007/s00894-009-0607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0607-x

Keywords

Navigation