Skip to main content
Log in

Molecular modeling of the rabbit colonic (HKα2a) H+, K+ ATPase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A model of the HKα2a subunit of the rabbit colonic H+, K+ ATPase has been generated using the crystal structure of the Ca+2 ATPase as a template. A pairwise sequence alignment of the deduced primary sequences of the two proteins demonstrated that they share 29% amino acid sequence identity and 47% similarity. Using O (version 7) the model of HKα2a was constructed by interactively mutating, deleting, and inserting the amino acids that differed between the pairwise sequence alignment of the Ca+2 ATPase and HKα2a. Insertions and deletions in the HKα2a sequence occur in apparent extra-membraneous loop regions. The HKα2a model was energy minimized and globally refined to a level comparable to that of the Ca+2 ATPase structure using CNS. The charge distribution over the surface of HKα2a was evaluated in GRASP and possible secondary structure elements of HKα2a were visualized in BOBSCRIPT. Conservation and placement of residues that may be involved in ouabain binding by the H+, K+ ATPase were considered and a putative location for the β subunit was postulated within the structure.

Figure Possible architecture of the HKα2a subunit. The residue in green is the lysine (position 517, Fig. 1) that lies in the nucleotide binding pocket and the residue in red is the aspartic acid at the phosphorylation site (position 385). Based on an alignment with the Ca+2 ATPase, ten transmembrane helices were modeled into HKα2a. The ten transmembrane helices are drawn as rods and shown in different colors for clarity. From left to right, the transmembrane helix designations are M10 (blue), M7 (gray), M8 (purple), M9 (orange), M5 (pink), M6 (green), M3 (brown), M4 (cyan), M2 (teal), and M1 (almond).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–b.
Fig. 3a–c.
Fig. 4.
Fig. 5.
Fig. 6a–d.
Fig. 7a–b.

Similar content being viewed by others

References

  1. Wingo CS, Cain BD (1993) Annu Rev Physiol 55:323–347

    Google Scholar 

  2. Palmgren MG, Axelsen KB (1998) Biochim Biophys Acta 1365:37–45

    Article  CAS  PubMed  Google Scholar 

  3. Rice WJ, Young HS, Martin DW, Sachs JR, Stokes DL (2001) Biophys J 80:2187–2197

    CAS  PubMed  Google Scholar 

  4. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Nature 405:647–655

    Article  CAS  PubMed  Google Scholar 

  5. Zhang P, Toyoshima C, Yonekura K, Green NM, Stokes DL (1998) Nature 392:835–839

    Google Scholar 

  6. Hebert H, Purhonen P, Vorum H, Thomsen K, Maunsbach AB (2001) J Mol Biol 314:479–494

    Article  CAS  PubMed  Google Scholar 

  7. Thompson J, Higgins D, Gibson T (1994) Nucleic Acid Res 22:4673–4680

    PubMed  Google Scholar 

  8. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr A 47:110–119

    PubMed  Google Scholar 

  9. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) J Mol Biol 305:567–80

    Article  CAS  PubMed  Google Scholar 

  10. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  Google Scholar 

  11. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  12. Nicholls A, Sharp KA, Honig B (1991) Proteins 11:281–296

    CAS  PubMed  Google Scholar 

  13. (a) Esnouf RM (1997) J Mol Graph Model 15:132–134; (b) Esnouf RM (1997) J Mol Graph Model 15:112–113

    Google Scholar 

  14. Ettrich R, Melichercik M, Teisinger J, Ettrichova O, Krumscheid R, Hofbauerova K, Kvasnicka P, Schoner W, Amler E (2001) J Mol Model 7:184–192

    CAS  Google Scholar 

  15. Gibrat JF, Garnier J, Robson B (1987) J Mol Biol 198:425–443

    CAS  PubMed  Google Scholar 

  16. Grishin AV, Bevensee MO, Modyanov NN, Rajendran V, Boron WF, Caplan MJ (1996) Am J Physiol 271:F539–551

    CAS  PubMed  Google Scholar 

  17. Sweadner KJ, Donnet C (2001) Biochem J 356:685–704

    Article  CAS  PubMed  Google Scholar 

  18. Geering K, Crambert G, Yu C, Korneenko TV, Pestov NB, Modyanov NN (2000) Biochemistry 39:12688–12698

    Article  CAS  PubMed  Google Scholar 

  19. Colonna TE, Huynh L, Fambrough DM (1997) J Biol Chem 272:12366–12372

    Article  CAS  PubMed  Google Scholar 

  20. Campbell WG, Weiner ID, Wingo CS, Cain BD (1999) Am J Physiol 276:F237–245

    CAS  PubMed  Google Scholar 

  21. Fejes-Toth G, Naray-Fejes-Toth A, Velazquez H (1999) Kidney Int 56:1029–1036

    Article  CAS  PubMed  Google Scholar 

  22. Or E, Goldshleger R, Karlish SJ (1999) J Biol Chem 274:2802–2809

    Article  CAS  PubMed  Google Scholar 

  23. Hasler U, Crambert G, Horisberger JD, Geering K (2001) J Biol Chem 276:16356–16364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service Grant No. RO1-54721.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Cain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gumz, M.L., Duda, D., McKenna, R. et al. Molecular modeling of the rabbit colonic (HKα2a) H+, K+ ATPase. J Mol Model 9, 283–289 (2003). https://doi.org/10.1007/s00894-003-0140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0140-2

Keywords

Navigation