Skip to main content
Log in

Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp.

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A gene encoding an esterase, ThaEst2349, was identified in the marine psychrophilic bacterium Thalassospira sp. GB04J01. The gene was cloned and overexpressed in E. coli as a His-tagged fusion protein. The recombinant enzyme showed optimal activity at 45 °C and the thermal stability displayed a retention of 75 % relative activity at 40 °C after 2 h. The optimal pH was 8.5 but the enzyme kept more than 75 % of its maximal activity between pH 8.0 and 9.5. ThaEst2349 also showed remarkable tolerance towards high concentrations of salt and it was active against short-chain p-nitrophenyl esters, displaying optimal activity with the acetate. The enzyme was tested for tolerance of organic solvents and the results are suggesting that it could function as an interesting candidate for biotechnological applications. The crystal structure of ThaEst2349 was determined to 1.69 Å revealing an asymmetric unit containing two chains, which also is the biological unit. The structure has a characteristic cap domain and a catalytic triad comprising Ser158, His285 and Asp255. To explain the cold-active nature of the enzyme, we compared it against thermophilic counterparts. Our hypothesis is that a high methionine content, less hydrogen bonds and less ion pairs render the enzyme more flexible at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr D66:213–221

    Article  Google Scholar 

  • Angkawidjaja C, Koga Y, Takano K, Kanaya S (2012) Structure and stability of a thermostable carboxylesterase from the thermoacidophilic archaeon Sulfolobus tokodaii. FEBS J 279:3071–3084

    Article  CAS  PubMed  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxylesterases: classification, properties and applications in biocatalysts. FEMS Microbiol Rev 26:73–81

    Article  CAS  PubMed  Google Scholar 

  • Brault G, Shareck F, Hurtubise Y, Lepine F, Doucet N (2012) Isolation and characterization of EstC, a new cold-active esterase from Streptomyces coelicolor A3(2). PLoS ONE. doi:10.1371/journal.pone.0032041

    Google Scholar 

  • Chakraborty S, Khopade A, Biao R, Jian W, Liu XY, Mahadik K, Chopade B, Zhang LX, Kokare C (2011) Characterization and stability studies on surfactant, detergent and oxidant stable α-amilase from marine haloalkaliphilic Saccharopolyspora sp. J Mol Catal B-Enzym 68:52–58

    Article  CAS  Google Scholar 

  • De Simone G, Mandrich L, Menchise V, Giordano V, Febbraio F, Rossi M, Pedone C, Manco G (2004) A substrate-induced switch in the reaction mechanism of a thermophilic esterase: kinetic evidences and structural basis. J Biol Chem 279:815–6823

    Google Scholar 

  • Do H, Lee JH, Kwon MH, Song HE, An JY, Eom SH, Lee SG, Kim HJ (2013) Purification, characterization and preliminary X-ray diffraction analysis of a cold-active lipase (CpsLip) from the psychrophilic bacterium Colwellia psychrerythraea 34H. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent tolerant enzymes. Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  • Esteban-Torres M, Mancheno JM, de las Rivas B, Munoz R (2014) Characterization of a cold-active esterase from Lactobacillus plantarum suitable for food fermentations. J Agric Food Chem 62:5126–5132

    Article  CAS  PubMed  Google Scholar 

  • Fedøy AE, Yang N, Martinez A, Leiros HKS, Steen IH (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372:130–149

    Article  PubMed  Google Scholar 

  • Fu J, Leiros HKS, de Pascale D, Johnson KA, Blencke HM, Landfald B (2013) Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library. Appl Microbiol Biotechnol 97:3965–3978

    Article  CAS  PubMed  Google Scholar 

  • Fuciños P, Gonzáles R, Altanes E, Sestelo ABF, Pérez-Guerra Pastrana L, Rúa L (2012) Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27. Methods Mol Biol 861:239–266

    Article  PubMed  Google Scholar 

  • Ghati A, Sarkar K, Paul G (2013) Production and characterization of an alkalothermostable, organic solvent tolerant and surfactant tolerant esterase produced by a thermophilic bacterium Geobacillus sp. AGP-04, isolated from Bakreshwar Hot Spring, India. JMBFS 3:155–162

    CAS  Google Scholar 

  • Gianese G, Bossa F, Pascarella S (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47:236–249

    Article  CAS  PubMed  Google Scholar 

  • Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–w549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon JH, Kim JT, Kang SG, Lee JH, Kim SJ (2009) Characterization and its potential application of two esterases derived from the arctic sediment metagenome. Mar Biotechnol (NY) 11:307–316

    Article  CAS  Google Scholar 

  • Ji Q, Xiao S, He B, Liu X (2010) Purification and characterization of an organic solvent tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J Mol Catal B Enzym 66:264–269

    Article  CAS  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Kim JT, Kang SG, Woo JH, Lee JH, Jeong BC, Kim SJ (2006) Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180. Appl Microbiol Biotechnol 74:820–828

    Article  PubMed  Google Scholar 

  • Kim YO, Heo YL, Nam BH, Kim DG, Jee YJ, Lee SJ, An CM (2013) Molecular cloning, purification and characterization of a cold-adapted esterase from Photobacterium sp. MA1-3. Fish Aquat Sci 16:311–318

    CAS  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  PubMed  Google Scholar 

  • Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N (2004) Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly–>Pro substitution near the active site on its catalytic activity and stability. Biochim Biophys Acta 1696:59–65

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Kim J, Hong S, Goo B, Lee S, Jang SH (2013) Cloning, expression and characterization of a recombinant esterase from cold-adapted Pseudomonas mandelii. Appl Biochem Biotechnol 169:29–40

    Article  CAS  PubMed  Google Scholar 

  • Leiros HKS, Willassen NP, Smalås AO (1999) Residue determinants and sequence analysis of cold-adapted trypsins. Extremophiles 3:205–219

    Article  CAS  PubMed  Google Scholar 

  • Leiros HKS, Willassen NP, Smalås AO (2000) Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wen A, Shen B, Lu J, Huang Y, Chang Y (2011) FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol 11:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lv XY, Guo LZ, Song L, Fu Q, Zhao K, Li AX, Luo XL, Lu WD (2010) Purification and characterization of a novel extracellular carboxylesterase from moderately halophilic bacterium Thalassobacillus sp. Strain DF-E4. Ann Microbiol 61:281–290

    Article  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 2:91–98

    Article  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793

    Article  CAS  PubMed  Google Scholar 

  • Mohamed YM, Ghazy MA, Sayed A, Ouf A, El-Dorry H, Siam R (2013) Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool. Sci Rep 3:3358

    PubMed  Google Scholar 

  • Nam KH, Kim MY, Kim SJ, Priyadarshi A, Lee WH, Hwang KY (2009) Structural and functional analysis of a novel Est5 belonging to the subfamily of hormone-sensitive lipase. Biochem Bioph Res Co 379:553–556

    Article  CAS  Google Scholar 

  • Ogino H, Ishikawa H (2001) Enzymes which are stable in the presence of organic solvents. J Biosci Bioeng 91:109–116

    Article  CAS  PubMed  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL (1992) The α/β hydrolase fold. Protein Eng 5:197–211

    Article  CAS  PubMed  Google Scholar 

  • Palm GJ, Fernandez-Alvaro E, Bogdanovic X, Bartsch S, Sczodrok J, Singh RK, Bottcher D, Atomi H, Bornscheuer UT, Hinrichs W (2011) The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity. Appl Microbiol Biot 91:1061–1072

    Article  CAS  Google Scholar 

  • Pérez D, Kovacic F, Wilhelm S, Jaeger KE, Garcia MT, Ventosa A, Mellado E (2012) Identification of amino acids involved in the hydrolitic activity of lipase LipBL from Marinobacter lipolyticus. Microbiology 158:2192–2203

    Article  PubMed  Google Scholar 

  • Rao L, Zhao X, Pan F, Li Y, Xue Y, Ma Y, Lu JR (2009) Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS ONE 4:1–10

    Article  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  CAS  PubMed  Google Scholar 

  • Santarossa G, Lafranconi PG, Alquati C, De Gioia L, Alberghina L, Fantucci P, Lotti M (2005) Mutations in the “lid” region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Lett 579:2383–2386

    Article  CAS  PubMed  Google Scholar 

  • Shakiba MH, Ali MS, Rahman RN, Salleh AB, Leow TC (2015) Cloning, expression and characterization of a novel cold-adapted GDSL family esterase from Photobacterium sp. Strain J15. Extremophiles 20:45–55

    Article  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  • Smalås AO, Leiros HKS, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57

    Article  PubMed  Google Scholar 

  • Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20:616–622

    Article  CAS  PubMed  Google Scholar 

  • Uppenberg J, Hansen MT, Patkar S, Jones TA (1994) The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2:293–308

    Article  CAS  PubMed  Google Scholar 

  • Werawatganone P, Wurster DE (2006) Determination of the hydrolysis kinetics of a-naphthyl acetate in micellar systems and the effect of HPMC (catalyst present). J Pharm Sci . doi:10.1002/jps.20800

    Google Scholar 

  • Wu G, Wu G, Zhan T, Shao Z, Liu Z (2013) Characterization of a cold-adapted and salt-tolerant esterase from a psychrotrophic bacterium Psychrobacter pacificensis. Extremophiles 17:809–819

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Han WJ (2009) Gene cloning and characterization of a novel esterase from activated sludge metagenome. Microb Cell Fact 8:18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Research Council of Norway for supporting part of this work by the Grant (No. 219710/F11) within the YGGDRASIL mobility program. This study was supported by The Research Council of Norway, the Functional Genomics Program (FUGE) through The Norwegian Structural Biology Centre (NorStruct). Provision of beam time at Bessy II, Berlin Germany at BL14.2 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta De Santi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Santi, C., Leiros, HK.S., Di Scala, A. et al. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp.. Extremophiles 20, 323–336 (2016). https://doi.org/10.1007/s00792-016-0824-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0824-z

Keywords

Navigation