Skip to main content
Log in

Mutational analysis of conserved aspartic acid residues in the Methanothermobacter thermautotrophicus MCM helicase

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Minichromosome maintenance (MCM) helicases are thought to function as the replicative helicases in archaea and eukarya, unwinding the duplex DNA in the front of the replication fork. The archaeal MCM helicase can be divided into three parts, the N-terminal, catalytic, and C-terminal regions. The N-terminal part of the protein is divided into three domains, A, B, and C, and was shown to be involved in protein multimerization and binding to single- and double-stranded DNA. Two Asp residues found in domain C are conserved among MCM proteins from different archaea. These residues are located in a loop at the interface with domain A. Mutations of these residues in the Methanothermobacter thermautotrophicus MCM protein, Asp202 and Asp203, to Asn result in a significant reduction in the ability of the enzyme to bind DNA and in lower thermal stability. However, the mutant proteins retained helicase and ATPase activities. Further investigation of the DNA binding revealed that the presence of ATP rescues the DNA binding deficiencies by these mutant proteins. Possible roles of these conserved residues in MCM function are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

dsDNA:

Double-stranded DNA

DSC:

Differential scanning calorimetry

MCM:

Minichromosome maintenance

mt:

Methanothermobacter thermautotrophicus

ssDNA:

Single-stranded DNA

References

  • Bae B et al (2009) Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog. Structure 17:211–222

    Article  PubMed  CAS  Google Scholar 

  • Brewster AS, Chen XS (2010) Insights into the MCM functional mechanism: lessons learned from the archaeal MCM complex. Crit Rev Biochem Mol Biol 45:243–256

    Article  PubMed  CAS  Google Scholar 

  • Brewster AS et al (2008) Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc Natl Acad Sci USA 105:20191–20196

    Article  PubMed  CAS  Google Scholar 

  • Costa A, Onesti S (2009) Structural biology of MCM helicases. Crit Rev Biochem Mol Biol 44:326–342

    Article  PubMed  CAS  Google Scholar 

  • Costa A et al (2008) Cryo-electron microscopy reveals a novel DNA-binding site on the MCM helicase. EMBO J 27:2250–2258

    Article  PubMed  CAS  Google Scholar 

  • Fletcher RJ, Chen XS (2006) Biochemical activities of the BOB1 mutant in Methanobacterium thermoautotrophicum MCM. Biochemistry 45:462–467

    Article  PubMed  CAS  Google Scholar 

  • Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS (2003) The structure and function of MCM from archaeal M. thermoautotrophicum. Nat Struct Biol 10:160–167

    Article  PubMed  CAS  Google Scholar 

  • Grainge I, Scaife S, Wigley DB (2003) Biochemical analysis of components of the pre-replication complex of Archaeoglobus fulgidus. Nucleic Acids Res 31:4888–4898

    Article  PubMed  CAS  Google Scholar 

  • Hardy CF, Dryga O, Seematter S, Pahl PM, Sclafani RA (1997) mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc Natl Acad Sci USA 94:3151–3155

    Article  PubMed  CAS  Google Scholar 

  • Kasiviswanathan R, Shin JH, Melamud E, Kelman Z (2004) Biochemical characterization of the Methanothermobacter thermautotrophicus minichromosome maintenance (MCM) helicase N-terminal domains. J Biol Chem 279:28358–28366

    Article  PubMed  CAS  Google Scholar 

  • Kasiviswanathan R, Shin JH, Kelman Z (2006) DNA binding by the Methanothermobacter thermautotrophicus Cdc6 protein is inhibited by the minichromosome maintenance helicase. J Bacteriol 188:4577–4580

    Article  PubMed  CAS  Google Scholar 

  • Kelman LM, Kelman Z (2003) Archaea: an archetype for replication initiation studies? Mol Microbiol 48:605–615

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff WH (1993) Exam: a two-state thermodynamic analysis program. NIST Tech Note 1401:1–103

    Google Scholar 

  • Liu W, Pucci B, Rossi M, Pisani FM, Ladenstein R (2008) Structural analysis of the Sulfolobus solfataricus MCM protein N-terminal domain. Nucleic Acids Res 36:3235–3243

    Article  PubMed  CAS  Google Scholar 

  • McEntee K, Weinstock GM, Lehman IR (1980) recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein. Proc Natl Acad Sci USA 77:857–861

    Article  PubMed  CAS  Google Scholar 

  • McGeoch AT, Bell SD (2008) Extra-chromosomal elements and the evolution of cellular DNA replication machineries. Nat Rev Mol Cell Biol 9:569–574

    Article  PubMed  CAS  Google Scholar 

  • Poplawski A, Grabowski B, Long SE, Kelman Z (2001) The zinc finger domain of the archaeal minichromosome maintenance protein is required for helicase activity. J Biol Chem 276:49371–49377

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg E, Trakselis MA, Bell SD, Ha T (2007) MCM forked substrate specificity involves dynamic interaction with the 5′-tail. J Biol Chem 282:34229–34234

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara N, Kasiviswanathan R, Melamud E, Han M, Schwarz FP, Kelman Z (2008) Coupling of DNA binding and helicase activity is mediated by a conserved loop in the MCM protein. Nucleic Acids Res 36:1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara N, Kelman LM, Kelman Z (2009a) Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 72:286–296

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara N, Schwarz FP, Kelman Z (2009b) ATP hydrolysis and DNA binding confer thermostability on the MCM helicase (dagger). Biochemistry 48:2330–2339

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Kelman Z (2006) The replicative helicases of bacteria, archaea and eukarya can unwind RNA–DNA hybrid substrates. J Biol Chem 281:26914–26921

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Grabowski B, Kasiviswanathan R, Bell SD, Kelman Z (2003a) Regulation of minichromosome maintenance helicase activity by Cdc6. J Biol Chem 278:38059–38067

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Jiang Y, Grabowski B, Hurwitz J, Kelman Z (2003b) Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases. J Biol Chem 278:49053–49062

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Heo GY, Kelman Z (2009) The Methanothermobacter thermautotrophicus MCM helicase is active as a hexameric ring. J Biol Chem 284:540–546

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Lori Kelman for her comments on the manuscript. Specialty oligonucleotide synthesis was supported as part of a NIST/UMD Joint Program in Bioscience Measurements (70NANB9H9196). This work was supported by a grant from the National Science Foundation (MCB-0815646).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozomi Sakakibara.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakakibara, N., Kasiviswanathan, R. & Kelman, Z. Mutational analysis of conserved aspartic acid residues in the Methanothermobacter thermautotrophicus MCM helicase. Extremophiles 15, 245–252 (2011). https://doi.org/10.1007/s00792-010-0352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-010-0352-1

Keywords

Navigation