Skip to main content
Log in

Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The prokaryotic diversity of culturable thermophilic communities of deep-sea hydrothermal chimneys was analysed using a continuous enrichment culture performed in a gas-lift bioreactor, and compared to classical batch enrichment cultures in vials. Cultures were conducted at 60°C and pH 6.5 using a complex medium containing carbohydrates, peptides and sulphur, and inoculated with a sample of a hydrothermal black chimney collected at the Rainbow field, Mid-Atlantic Ridge, at 2,275 m depth. To assess the relevance of both culture methods, bacterial and archaeal diversity was studied using cloning and sequencing, DGGE, and whole-cell hybridisation of 16S rRNA genes. Sequences of heterotrophic microorganisms belonging to the genera Marinitoga, Thermosipho, Caminicella (Bacteria) and Thermococcus (Archaea) were obtained from both batch and continuous enrichment cultures while sequences of the autotrophic bacterial genera Deferribacter and Thermodesulfatator were only detected in the continuous bioreactor culture. It is presumed that over time constant metabolite exchanges will have occurred in the continuous enrichment culture enabling the development of a more diverse prokaryotic community. In particular, CO2 and H2 produced by the heterotrophic population would support the growth of autotrophic populations. Therefore, continuous enrichment culture is a useful technique to grow over time environmentally representative microbial communities and obtain insights into prokaryotic species interactions that play a crucial role in deep hydrothermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alain K, Olagnon M, Desbruyeres D, Page A, Barbier G, Juniper SK, Querellou J, Cambon-Bonavita MA (2002a) Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42:463–476

    Article  CAS  PubMed  Google Scholar 

  • Alain K, Pignet P, Zbinden M, Quillevere M, Duchiron F, Donval JP Lesongeur F, Raguenes G, Crassous P, Querellou J, Cambon-Bonavita MA (2002b) Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1621–1628

    Article  PubMed  CAS  Google Scholar 

  • Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3:489–498

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Antoine E, Cilia V, Meunier J, Guezennec J, Lesongeur F, Barbier G (1997) Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123

    Article  PubMed  CAS  Google Scholar 

  • DeChaine EG, Bates AE, Shank TM, Cavanaugh CM (2006) Off-axis symbiosis found: characterization and biogeography of bacterial symbionts of Bathymodiolus mussels from Lost City hydrothermal vents. Environ Microbiol 8:1902–1912

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. CABIOS 12:543–548

    PubMed  CAS  Google Scholar 

  • Godfroy A, Meunier JR, Guezennec J, Lesongeur F, Raguénès G, Rimbault A, Barbier G (1996) Thermococcus fumicolans sp. nov. a new hyperthermophilic archaeum isolated from deep-sea hydrothermal vent in North Fiji bassin. Int J Syst Bacteriol 46:1113–1119

    PubMed  CAS  Google Scholar 

  • Godfroy A, Lesongeur F, Raguénès G, Quérellou J, Antoine E, Meunier JR, Guezennec J, Barbier G (1997) Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626

    PubMed  CAS  Google Scholar 

  • Godfroy A, Raven NDH, Sharp RJ (2000) Physiology and continuous culture of the hyperthermophilic deep-sea vent archaeon Pyrococcus abyssi ST549. FEMS Microbiol Lett 186:127–132

    Article  PubMed  CAS  Google Scholar 

  • Godfroy A, Postec A, Raven NDH (2005) Growth of hyperthermophilic microorganisms for physiological and nutritional studies. In: Rainey FA, Oren A (eds) Methods in microbiology, extremophiles. Academic, Oxford, pp 91–106

    Google Scholar 

  • Grote R, Li LN, Tamaoka J, Kato C, Horikoshi K, Antranikian G (1999) Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa trough. Extremophiles 3:55–62

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Kuypers MMM, Tsunogai U, Ishibashi JI, Nakamura KI, Treude T, Ohkubo S, Nakaseama M, Gena K, Chiba H, Hirayama H, Nunoura T, Takai K, Jorgensen BB, Horikoshi K, Boetius A (2006) From the cover: microbial community in a sediment-hosted CO2 lake of the southern Okinawa trough hydrothermal system. PNAS 103:14164–14169

    Article  PubMed  CAS  Google Scholar 

  • Johnson MR, Conners SB, Montero CI, Chou CJ, Shockley KR, Kelly RM (2006) The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture. Appl Environ Microbiol 72:811–818

    Article  PubMed  CAS  Google Scholar 

  • Karl DM (1995) Ecology of free-living hydrothermal vent microbial communities. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents. CRC Press, West Palm Beach, pp 35–125

    Google Scholar 

  • Kormas KA, Tivey MK, Von Damm K, Teske A (2006) Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise). Environ Microbiol 8:909–920

    Article  PubMed  CAS  Google Scholar 

  • Marteinsson V, Birrien J, Reysenbach A, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr U, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359

    PubMed  Google Scholar 

  • McCliment EA, Voglesonger KM, O’Day PA, Dunn EE, Holloway JR, Cary SC (2006) Colonization of nascent, deep-sea hydrothermal vents by a novel archaeal and nanoarchaeal assemblage. Environ Microbiol 8:114–125

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Slobodkin AI, Kostrikina NA, L’Haridon S, Nercessian O, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003) Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53:1637–1641

    Article  PubMed  CAS  Google Scholar 

  • Moussard H, L’Haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Reysenbach AL, Jeanthon C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233

    Article  PubMed  CAS  Google Scholar 

  • Moussard H, Corre E, Cambon-Bonavita MA, Fouquet Y, Jeanthon C (2006) Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13°N hydrothermal vent field, East Pacific Rise. FEMS Microbiol Ecol 58:449–463

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Ant van Leeuw 73:127–141

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction—amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nercessian O, Reysenbach AL, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N). Environ Microbiol 5:492–502

    Article  PubMed  Google Scholar 

  • Postec A, Pignet P, Cueff-Gauchard V, Schmitt A, Querellou J, Godfroy A (2005a) Optimisation of growth conditions for continuous culture of the hyperthermophilic archaeon Thermococcus hydrothermalis and development of sulphur-free defined and minimal media. Res Microbiol 156:82–87

    Article  PubMed  CAS  Google Scholar 

  • Postec A, Urios L, Lesongeur L, Ollivier B, Querellou J, Godfroy A (2005b) Continuous enrichment culture and molecular monitoring to investigate the microbial diversity of thermophiles inhabiting the deep-sea hydrothermal ecosystems. Curr microbiol 50:138–144

    Article  PubMed  CAS  Google Scholar 

  • Postec A, Le Breton C, Fardeau ML, Lesongeur F, Pignet P, Querellou J, Ollivier B, Godfroy A (2005c) Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Postec A (2005d) Diversité de populations microbiennes thermophiles d’une cheminée hydrothermale océanique: cultures d’enrichissement en bioréacteur et isolement d’espèces nouvelles. In: Thesis, Université de Provence, France

  • Raven N, Ladwa N, Sharp R (1992) Continuous culture of the hyperthermophilic archaeum Pyrococcus furiosus. Appl Microbiol Biotechnol 38:263–267

    Article  CAS  Google Scholar 

  • Raven NDH, Sharp RJ (1997) Development of defined and minimal media for the growth of the hyperthermophilic archaeon Pyrococcus furiosus Vc1. FEMS Microbiol Lett 146:135–141

    Article  CAS  Google Scholar 

  • Sharp RJ, Raven NDH (1997) Isolation and growth of hyperthermophiles. In: Rhodes PM, Stanbury PF (eds) Applied microbial physiology: a practical approach. IRL Press, Oxford, pp 23–51

    Google Scholar 

  • Suzuki M, Giovannoni S (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    PubMed  CAS  Google Scholar 

  • Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26:37–57

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tor JM, Amend JP, Lovley DR (2003) Metabolism of organic compounds in anaerobic, hydrothermal sulphate-reducing marine sediments. Environ Microbiol 5:583–591

    Article  PubMed  CAS  Google Scholar 

  • Wery N, Cambon-Bonavita MA, Lesongeur F, Barbier G (2002) Diversity of anaerobic heterotrophic thermophiles isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. FEMS Microbiol Ecol 41:105–114

    Article  CAS  PubMed  Google Scholar 

  • Wery N, Lesongeur F, Pignet P, Derennes V, Cambon-Bonavita MA, Godfroy A, Barbier G (2001) Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank P.M. Sarradin, chief scientist of the ATOS cruise, as well as the captain and crew of the RV/Atalante and the Victor team. This work was supported by Ifremer, the European VENTOX Program and Région Bretagne. We also wish to thank Dr. C. L. Van Dover and Dr. G. Webster for their helpful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Postec.

Additional information

Communicated by G. Antranikian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (XLS 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postec, A., Lesongeur, F., Pignet, P. et al. Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys. Extremophiles 11, 747–757 (2007). https://doi.org/10.1007/s00792-007-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0092-z

Keywords

Navigation