Skip to main content
Log in

Identification of iron-reducing Thermus strains as Thermus scotoductus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Thermus strain SA-01, previously isolated from a deep (3.2 km) South African gold mine, is closely related to Thermus strains NMX2 A.1 and VI-7 (previously isolated from thermal springs in New Mexico, USA, and Portugal, respectively). Thermus strains SA-01 and NMX2 A.1 have also been shown previously to grow using nitrate, Fe(III), Mn(IV) or SO as terminal electron acceptors and to be capable of reducing Cr(VI), U(VI), Co(III), and the quinone-containing compound anthraquinone-2,6-disulfonate. The objectives of this study were to determine the phylogenetic positions of the three known metal-reducing Thermus strains and to determine the phylogenetic significance of metal reduction within the genus Thermus. Phylogenetic analyses of 16S rDNA sequences, BOX PCR genomic fingerprinting, and DNA–DNA reassociation analyses indicated that these strains belong to the previously described genospecies T. scotoductus. The morphologies and lipid fatty acid profiles of these metal-reducing strains are consistent with their identification as T. scotoductus; however, the T. scotoductus strains tested in this study evinced a wide intraspecies variability in some other phenotypic traits, e.g., carbon substrate utilization and pigmentation. Iron reduction occurred in all strains of T. scotoductus tested except the mixotrophic, sulfur-oxidizing strain IT-7254. Thermus strains belonging to other species did not reduce Fe(III) to Fe(II) or reduced it only poorly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3

Similar content being viewed by others

References

  • Balkwill D (1993) DOE makes subsurface cultures available. ASM News 59:504–506

    Google Scholar 

  • Brock TD (1984) The genus Thermus. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 333–337

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. sp. n., a non-sporulating extreme thermophile. J Bacteriol 98:289–297

    PubMed  Google Scholar 

  • Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    CAS  PubMed  Google Scholar 

  • Chung AP, Rainey FA, Valente M, Nobre MF, da Costa MS (2000). Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland. Int J Syst Evol Microbiol 50:209–217

    CAS  PubMed  Google Scholar 

  • da Costa MS, Nobre MF, Rainey F (2001) Genus I. Thermus. In: Garrity G, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1. The Archaea, cyanobacteria, phototrophs & deeply branching bacteria. Springer, Berlin Heidelberg New York, pp 404–414

  • Degryse E, Glansdorff N, Pierard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196

    CAS  PubMed  Google Scholar 

  • De Ley, J, Cattoir, H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from denaturation curves. Eur J Biochem 12:133–142

    PubMed  Google Scholar 

  • Escara JF, Hutton JR (1980) The thermal stability of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) Version 3.5c., 3.5c edn. University of Washington, Seattle, Washington

  • Fox GE, Wisotzkey JD, Jurtshuk P J (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    CAS  PubMed  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340

    CAS  PubMed  Google Scholar 

  • Gihring TM, Druschel G K, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862

    Google Scholar 

  • Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158

    CAS  Google Scholar 

  • Gutell RR (1994) Collection of small subunit (16S- and 16S-like) ribosomal RNA structures. Nucleic Acids Res 22:3502–3507

    PubMed  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26

    PubMed  Google Scholar 

  • Hensel R, Demharter W, Kandler O, Kroppenstedt RM, Stackebrandt (1986) Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int J Syst Bacteriol 36:444–453

    CAS  Google Scholar 

  • Hudson JA (1986) The taxonomy and ecology of the genus Thermus. PhD dissertation, University of Waikato, Hamilton, New Zealand

  • Hudson JA, Morgan HW, Daniel RM (1987) Thermus filiformis sp. nov., a filamentous caldoactive bacterium. Int J Syst Bacteriol 37:431–436

    Google Scholar 

  • Hudson JA, Morgan HW, Daniel RM (1989) Numerical classification of Thermus isolates from globally distributed hot springs. Syst Appl Microbiol 11:250–256

    CAS  Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. J Syst Appl Microbiol 4:184–192

    CAS  Google Scholar 

  • Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221

    CAS  PubMed  Google Scholar 

  • Kristjansson JK, Hreggvidsson GO, Alfredsson GA (1986) Isolation of halotolerant Thermus spp. from submarine hot springs in Iceland. Appl Environ Microbiol 52:1313–1316

    Google Scholar 

  • Kristjansson JK, Hjorleifsdottir S, Marteinsson VT, Alfredsson GA (1994) Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and Including Thermus sp. X-1. Syst Appl Microbiol 17:44–50

    Google Scholar 

  • Louws FJ, Fulbright DW, Stephens T, de Bruijn FJ (1994) Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60:2286–2295

    PubMed  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    PubMed  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    CAS  Google Scholar 

  • Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–8

    PubMed  Google Scholar 

  • Oshima T, Imahori K (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a non-sporulating thermophilic bacterium form a Japanese thermal spa. Int J Syst Bacteriol 24:102–112

    CAS  Google Scholar 

  • Pask-Hughes RA, Williams RAD (1975) Extremely thermophilic Gram-negative bacteria from hot tap water. J Gen Microbiol 88:321–328

    CAS  PubMed  Google Scholar 

  • Ramaley RF, Hixson J (1970) Isolation of non-pigmented, thermophilic bacterium similar to Thermus aquaticus. J Bacteriol 103:527–528

    CAS  PubMed  Google Scholar 

  • Ramirez-Arcos S, Fernandez-Herrero L A, Berenguer J (1998a) A thermophilic nitrate reductase is responsible for the strain specific anaerobic growth of Thermus thermophilus HB8. Biochim Biophys Acta 1396:215–27

    CAS  PubMed  Google Scholar 

  • Ramirez-Arcos S, Fernandez-Herrero LA, Marin I, Berenguer J (1998b) Anaerobic growth, a property horizontally transferred by an Hfr-like mechanism among extreme thermophiles. J Bacteriol 180:3137–43

    CAS  PubMed  Google Scholar 

  • Ringelberg DB, Townsend GT, DeWeerd KA, Suflita JM, and White DC (1994) Detection of the anaerobic dechlorinating microorganism Desulfononiletiedjei in environmental matrices by its signature lipopolysaccharide branch-long-chain hydroxy fatty acids. FEMS Microbiol Ecol 14:9–18

    Article  CAS  Google Scholar 

  • Santos MA, Williams RAD, da Costa MS (1989) Numerical taxonomy of Thermus isolates from hot springs in Portugal. Syst App Microbiol 12:310–315

    Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Holst O, Kristjannson JK (2001) Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus. Extremophiles 5:45–51

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxanomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    CAS  Google Scholar 

  • Swofford DL (2000) PAUP* 4.0, beta version 4.0b4a, Sinauer Associates, Inc., Sunderland, Maryland

  • Tenreiro S, Nobre MF, da Costa MS (1995a) Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., two new species related to Thermus ruber but with lower growth temperatures. Int J Syst Bacteriol 45:633–639

    CAS  PubMed  Google Scholar 

  • Tenreiro S, Nobre MF, Hoste B, Gillis M, Kristjansson JK, da Costa MS (1995b) DNA:DNA hybridization and chemotaxonomic studies of Thermus scotoductus. Res Microbiol 146:315–324

    Article  PubMed  Google Scholar 

  • Wait R, Carreto L, Fernandez Nobre M, Ferreira AM, da Costa MS (1997) Characterization of novel long chain 1,2-diols in Thermus species and demonstration that Thermus strains contain both glycerol-linked and diol-linked glycolipids. J Bacteriol 179:6154–6162

    CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner, DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  • White DC, Ringelberg DB (1998) Signature lipid biomarker analysis. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 255–272

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62

    Google Scholar 

  • Williams RAD, Sharp RJ (1995) The taxonomy and identification of Thermus. In: Sharp RJ, Williams RAD (eds) Thermus species: a biotechnology handbook. Plenum Press, New York, pp 1–42

  • Williams RAD, Smith KE, Welch SG, Micallef J, Sharp RJ (1995) DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int J Syst Bacteriol 46:495–499

    Google Scholar 

  • Williams RAD, Smith KE, Welch SG, Micallef J (1996) Thermus oshimai sp. nov., isolated from hot springs in Portugal, Iceland, and the azores, and comment on the concept of a limited geographical distribution of Thermus species. Int J Syst Bacteriol 46:403–408

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mary McHale and Gwendolyn R. Drake for technical assistance. This research was supported by grant no. EAR9978267 from the National Science Foundation, Life in Extreme Environments (LExEn) Program, and by grants from the National Aeronautics and Space Administration’s Astrobiology Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Balkwill.

Additional information

Communicated by J. Wiegel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balkwill, D.L., Kieft, T.L., Tsukuda, T. et al. Identification of iron-reducing Thermus strains as Thermus scotoductus . Extremophiles 8, 37–44 (2004). https://doi.org/10.1007/s00792-003-0357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-003-0357-0

Keywords

Navigation