Skip to main content

Advertisement

Log in

Multi-target heteroleptic palladium bisphosphonate complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bisphosphonates are the most commonly prescribed drugs for the treatment of osteoporosis and other bone illnesses. Some of them have also shown antiparasitic activity. In search of improving the pharmacological profile of commercial bisphosphonates, our group had previously developed first row transition metal complexes with N-containing bisphosphonates (NBPs). In this work, we extended our studies to heteroleptic palladium–NBP complexes including DNA intercalating polypyridyl co-ligands (NN) with the aim of obtaining potential multi-target species. Complexes of the formula [Pd(NBP)2(NN)]·2NaCl·xH2O with NBP = alendronate (ale) or pamidronate (pam) and NN = 1,10 phenanthroline (phen) or 2,2′-bipyridine (bpy) were synthesized and fully characterized. All the obtained compounds were much more active in vitro against T. cruzi (amastigote form) than the corresponding NBP ligands. In addition, complexes were nontoxic to mammalian cells up to 50–100 µM. Compounds with phen as ligand were 15 times more active than their bpy analogous. Related to the potential mechanism of action, all complexes were potent inhibitors of two parasitic enzymes of the isoprenoid biosynthetic pathway. No correlation between the anti-T. cruzi activity and the enzymatic inhibition results was observed. On the contrary, the high antiparasitic activity of phen-containing complexes could be related to their ability to interact with DNA in an intercalative-like mode. These rationally designed compounds are good candidates for further studies and good leaders for future drug developments.

Graphic abstract

Four new palladium heteroleptic complexes with N-containing commercial bisphosphonates and DNA intercalating polypyridyl co-ligands were synthesized and fully characterized. All complexes displayed high anti-T. cruzi activity which could be related to the inhibition of the parasitic farnesyl diphosphate synthase enzyme but mainly to their ability to interact DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Graham Russell R (2011) Bone 49:2–19

    Article  PubMed  CAS  Google Scholar 

  2. Gałęzowska J (2018) ChemMedChem 13(4):289–302

    Article  PubMed  CAS  Google Scholar 

  3. Ebetino FH, Hogan AML, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna ChE, Russell RG (2011) Bone 49:20–33

    Article  CAS  PubMed  Google Scholar 

  4. Cremers S, Drake MT, Ebetino FH, Bilezikian JP, Russell RGG (2019) Br J Clin Pharmacol 85(6):1052–1062

    Article  PubMed  PubMed Central  Google Scholar 

  5. Docampo R, Moreno SN (2011) Curr Drug Target-Infect Disord 1:51–61

    Article  Google Scholar 

  6. Martin MB, Grimley JS, Lewis JC, Heath HT, Bailey BN, Kendrick H, Yardley V, Caldera A, Lira R, Urbina JA, Moreno SNJ, Docampo R, Croft SL, Oldfield E (2001) J Med Chem 44(6):909–916

    Article  CAS  PubMed  Google Scholar 

  7. Urbina JA, Docampo R (2003) Trends Parasitol 19:495–501

    Article  CAS  PubMed  Google Scholar 

  8. Docampo R, Moreno SNJ (2008) Curr Pharm Des 14:882–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montalvetti A, Bailey BN, Martin MB, Severin GW, Oldfield E, Docampo R (2001) J Biol Chem 276:33930–33937

    Article  CAS  PubMed  Google Scholar 

  10. Rodriguez JB, Falcone BN, Szajnman SH (2016) Expert Opin Drug Discov 11:307–320

    Article  CAS  PubMed  Google Scholar 

  11. Mukherjee S, Basu S, Zhang K (2019) Mol Biochem Parasit 230:8–15

    Article  CAS  Google Scholar 

  12. Demoro B, Caruso F, Rossi M, Benítez D, Gonzalez M, Cerecetto H, Parajón-Costa B, Castiglioni J, Gallizi M, Docampo R, Otero L, Gambino D (2010) J Inorg Biochem 104:1252–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Demoro B, Caruso F, Rossi M, Benítez D, González M, Cerecetto H, Galizzi M, Malayil L, Docampo R, Faccio R, Mombrú AW, Gambino D, Otero L (2012) Dalton Trans 41(21):6468–6476

    Article  CAS  PubMed  Google Scholar 

  14. Demoro B, Rostán S, Moncada M, Li ZH, Docampo R, Olea Azar C, Maya JD, Torres J, Gambino D, Otero L (2018) J Biol Inorg Chem 23(2):303–312

    Article  CAS  PubMed  Google Scholar 

  15. Cavalli A, Bolognesi ML (2009) J Med Chem 52:7339–7359

    Article  CAS  PubMed  Google Scholar 

  16. Zheng W, Zhao Y, Luo Q, Zhang Y, Wu K, Wang F (2016) Sci China Chem 59:1240–1249

    Article  CAS  Google Scholar 

  17. Huang R, Wallqvist A, Covell DG (2005) Biochem Pharmacol 69:1009–1039

    Article  CAS  PubMed  Google Scholar 

  18. Kinnamon K, Steck EA, Rane ES (1979) Antimicrob Agents Chemother 15:157–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dorosti Z, Yousefi M, Maryam Sharafi S, Darani HY (2014) Future Oncol 10:2529–2539

    Article  CAS  PubMed  Google Scholar 

  20. Sánchez-Delgado RA, Anzellotti A, Suárez L (2004) Metal ions in biological systems. In: Sigel H, Sigel A (eds) 41: metal ions and their complexes in medication. Marcel Dekker, New York, pp 379–419

    Google Scholar 

  21. Otero L, Gambino D (2019) Metal compounds in the development of antiparasitic agents: rational design from basic chemistry to the clinic. In: Carver P (ed) 19: essential metals in medicine: therapeutic use and toxicity of metal ions in the clinic metal ions in life sciences. de Gruyter, Berlin, pp 331–358

    Google Scholar 

  22. Pages BJ, Garbutcheon-Singh KB, Aldrich-Wright JR (2017) Eur J Inorg Chem 2017(12):1613–1624

    Article  CAS  Google Scholar 

  23. Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P (2016) Coord Chem Rev 310:41–79

    Article  CAS  Google Scholar 

  24. Scalese G, Benítez J, Rostán S, Correia I, Bradford L, Vieites M, Minini L, Merlino A, Coitiño EL, Birriel E, Varela J, Cerecetto H, González M, Costa Pessoa J, Gambino D (2015) J Inorg Biochem 147:116–125

    Article  CAS  PubMed  Google Scholar 

  25. Gambino D (2011) Coord Chem Rev 255(19–20):2193–2203

    Article  CAS  Google Scholar 

  26. Scalese G, Mosquillo MF, Rostán S, Castiglioni J, Alho I, Pérez L, Correia I, Marques F, Costa Pessoa J, Gambino D (2017) J Inorg Biochem 175:154–166

    Article  CAS  PubMed  Google Scholar 

  27. Alam MN, Huq F (2016) Coord Chem Rev 316:36–67

    Article  CAS  Google Scholar 

  28. Otero L, Vieites M, Boiani L, Denicola A, Rigol Olsen C, Opazo L, Olea Azar C, Maya Arango J, Morello Casté A, Krauth Siegel R, Piro O, Castellano E, González M, Gambino D, Cerecetto H (2006) J Med Chem 49(11):3322–3331

    Article  CAS  PubMed  Google Scholar 

  29. Rodríguez Arce E, Mosquillo MF, Pérez-Díaz L, Echeverría GA, Piro OE, Merlino A, Coitiño EL, Maríngolo Ribeiro C, Leite CQF, Pavan FR, Otero L, Gambino D (2015) Dalton Trans 44:14453–14464

    Article  PubMed  CAS  Google Scholar 

  30. Rodríguez Arce E, Putzu E, Lapier M, Maya JD, Olea Azar C, Echeverría GA, Piro OE, Medeiros A, Sardi F, Comini M, Risi G, Correia I, Costa Pessoa J, Otero L, Gambino D (2019) Dalton Trans 48:7644–7658

    Article  PubMed  Google Scholar 

  31. Garoufis A, Hadjikakou SK, Hadjiliadis N (2009) Coord Chem Rev 253(9–10):1384–1397

    Article  CAS  Google Scholar 

  32. Mansouri-Torshizi H, Saeidifar M, Divsalar A, Saboury AA (2010) Spectrochim Acta A 77(1):312–318

    Article  CAS  Google Scholar 

  33. Kukushkin YN, Vlasova RA, Pazukhina YL (1968) Zh Prikl Khim 41(11):2381–2385

    CAS  Google Scholar 

  34. Fulmer GR, Miller AJ, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29(9):2176–2179

    Article  CAS  Google Scholar 

  35. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  36. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  38. Hariharan PC, Pople JA (1973) Theoret Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  39. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  40. Feller D (1996) J Comp Chem 17:1571–1586

    Article  CAS  Google Scholar 

  41. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052

    Article  CAS  PubMed  Google Scholar 

  42. Matczak-Jon E, Videnova-Adrabinska V (2005) Coord Chem Rev 249:2458–2488

    Article  CAS  Google Scholar 

  43. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  44. Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298

    Article  Google Scholar 

  45. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  46. Pyykkö P (1990) The effect of relativity in atoms, molecules and the solid state. Plenum, New York

    Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2013) Gaussian 09, Rev. A.01. Gaussian Inc, Wallingford

    Google Scholar 

  48. Canavaci AM, Bustamante JM, Padilla AM, Pereza Brandan CM, Simpson LJ, Xu D, Boehlke CL, Tarleton RL (2010) PLOS Negl Trop Dis 4:e740–e745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Recher M, Barboza AP, Li Z-H, Galizzi M, Ferrer-Casal M, Szajnman SH, Docampo R, Moreno SNJ, Rodriguez JB (2013) Eur J Med Chem 60:431–440

    Article  CAS  PubMed  Google Scholar 

  50. Mosmann TJ (1983) Immunol Methods 65(1–2):55–63

    Article  CAS  Google Scholar 

  51. Nardelli SC, Che FY, Silmon de Monerri NC, Xiao H, Nieves E, Madrid-Aliste C, Angel SO, Sullivan WJ Jr, Angeletti RH, Kim K, Weiss LM (2013) MBio 4(6):e00922–1013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RG, Oppermann U (2006) Proc Natl Acad Sci USA 103:7829–7834

    Article  CAS  PubMed  Google Scholar 

  53. Rilling HC (1985) Methods Enzymol 110:145–152

    Article  CAS  PubMed  Google Scholar 

  54. Ferella M, Montalvetti A, Rohloff P, Miranda K, Fang J, Reina S, Kawamukai M, Búa J, Nilsson D, Pravia C, Katzin A, Cassera MB, Åslund L, Andersson B, Docampo R, Bontempi EJ (2006) J Biol Chem 281(51):39339–39348

    Article  CAS  PubMed  Google Scholar 

  55. Barton JK, Goldberg JM, Kumar ChV, Turro NJ (1986) J Am Chem Soc 108:2081–2088

    Article  CAS  Google Scholar 

  56. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York (ch. 8)

    Book  Google Scholar 

  57. Margiotta N, Capitelli F, Ostuni R, Natile G (2008) J Inorg Biochem 102(12):2078–2086

    Article  CAS  PubMed  Google Scholar 

  58. Wimmer S, Castan P, Wimmer FL, Johnson NP (1989) J Chem Soc Dalton Trans 403–412

  59. Galezowska J, Gumienna-Kontecka E (2012) Coord Chem Rev 256:105–124

    Article  CAS  Google Scholar 

  60. Fathy AA, Butler IS, Abd Elrahman M, Jean-Claude BJ, Mostafa SI (2018) Inorg Chim Acta 473:44–50

    Article  CAS  Google Scholar 

  61. Campos-Vallette MM, Clavijo RE, Mendizabal F, Baraona R, Zamudio W, Diaz G (1996) Vib Spectrosc 12(1):37–44

    Article  CAS  Google Scholar 

  62. Gong Y, Tang W, Hou W, Zha Z, Hu C (2006) Inorg Chem 45:4987–4995

    Article  CAS  PubMed  Google Scholar 

  63. Juribašić M, Tušek-Božić L (2009) J Mol Struct 924–926:66–72

    Article  CAS  Google Scholar 

  64. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  65. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669–681

    Article  CAS  Google Scholar 

  66. Appleton G, Hall JR, McMahon I (1986) Inorg Chem 25:726–734

    Article  CAS  Google Scholar 

  67. Rodrigues CD, Scott DA, Bailey BN, De Souza W, Benchimol M, Moreno B, Urbina JA, Oldfield E, Moreno SNJ (2000) Biochem J 349(3):737–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alvarez-Valdes A, Matesanz AI, Perles J, Fernandes C, Correia JDG, Mendes F, Quiroga AG (2019) J Inorg Biochem 191:112–119

    Article  CAS  PubMed  Google Scholar 

  69. Frik M, Martínez A, Elie BT, Gonzalo O, Ramírez de Mingo D, Sanaú M, Sánchez Delgado R, Sadhukha T, Prabha S, Ramos JB, Marzo I, Contel M (2014) J Med Chem 57(23):9995–10012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Burgos Lopez Y, Del Plá J, Balsa LM, León IE, Echeverría GA, Piro OE, García Tojal J, Pis Diez R, González Baró AC, Parajón-Costa BS (2019) Inorg Chim Acta 487:31–40

    Article  CAS  Google Scholar 

  71. Tan C, Liu J, Chen LM, Shi S, Ji LN (2008) J Inorg Biochem 102:1644–1653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Melina Galizzi for technical help. Authors thank CSIC, PEDECIBA and ANII-SNI, Uruguay, and FONDECYT 1190340, Chile. Z-H Li and R.D. work was funded by the U.S. National Institute of Health (Grant AI082542 to R.D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía Otero.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipriani, M., Rostán, S., León, I. et al. Multi-target heteroleptic palladium bisphosphonate complexes. J Biol Inorg Chem 25, 509–519 (2020). https://doi.org/10.1007/s00775-020-01779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01779-y

Keywords

Navigation