Skip to main content
Log in

A bi-functional cobalt-porphyrinoid electrocatalyst: balance between overpotential and selectivity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cobalt porphyrins have been shown to electrocatalyze O2 reduction as well as H2 evolution. A cobalt porphyrin is synthesized when two electron-withdrawing groups are used in an attempt to reduce the overpotential involved in O2 reduction and H2 evolution. The results show that in the case of O2 reduction, instead of reduction of overpotential, the selectivity for O2 reduction changes to 2e/2H+ to produce H2O2. In the case of H2 evolution, the CoI state is incapable of catalyzing H+ reduction. Rather, a CoIII–H species needs to be reduced to CoII–H before H2 can be produced. There results add to the ongoing investigations into the factors that control the rates, overpotential and selectivity of these important cathodic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Zhang W, Lai W, Cao R (2017) Chem Rev 117:3717–3797

    Article  CAS  PubMed  Google Scholar 

  2. Dey S, Mondal B, Chatterjee S, Rana A, Amanullah S, Dey A (2017) Nat Rev Chem 1:0098

    Article  CAS  Google Scholar 

  3. Kärkäs MD, Verho O, Johnston EV, Åkermark B (2014) Chem Rev 114:11863–12001

    Article  CAS  PubMed  Google Scholar 

  4. McEvoy JP, Brudvig GW (2006) Chem Rev 106:4455–4483

    Article  CAS  PubMed  Google Scholar 

  5. Pegis ML, Wise CF, Martin DJ, Mayer JM (2018) Chem Rev 118:2340–2391

    Article  CAS  PubMed  Google Scholar 

  6. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    Article  CAS  PubMed  Google Scholar 

  7. Amanullah S, Singha A, Dey A (2019) Coord Chem Rev 386:183–208

    Article  CAS  Google Scholar 

  8. Kim E, Chufán EE, Kamaraj K, Karlin KD (2004) Chem Rev 104:1077–1134

    Article  CAS  PubMed  Google Scholar 

  9. Collman JP, Boulatov R, Sunderland CJ, Fu L (2004) Chem Rev 104:561–588

    Article  CAS  PubMed  Google Scholar 

  10. Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD (2018) Chem Rev 118:10840–11022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sengupta K, Chatterjee S, Samanta S, Dey A (2013) Proc Natl Acad Sci 110:8431

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chatterjee S, Sengupta K, Mondal B, Dey S, Dey A (2017) Acc Chem Res 50:1744–1753

    Article  CAS  PubMed  Google Scholar 

  13. Bhunia S, Rana A, Roy P, Martin DJ, Pegis ML, Roy B, Dey A (2018) J Am Chem Soc 140:9444–9457

    Article  CAS  PubMed  Google Scholar 

  14. Bhugun I, Lexa D, Savéant J-M (1996) J Am Chem Soc 118:1769–1776

    Article  CAS  Google Scholar 

  15. Schöfberger W, Faschinger F, Chattopadhyay S, Bhakta S, Mondal B, Elemans JAAW, Müllegger S, Tebi S, Koch R, Klappenberger F, Paszkiewicz M, Barth JV, Rauls E, Aldahhak H, Schmidt WG, Dey A (2016) Angew Chem Int Ed 55:2350–2355

    Article  CAS  Google Scholar 

  16. Rana A, Mondal B, Sen P, Dey S, Dey A (2017) Inorg Chem 56:1783–1793

    Article  CAS  PubMed  Google Scholar 

  17. Mondal B, Sen P, Rana A, Saha D, Das P, Dey A (2019) ACS Catal 9:3895–3899

    Article  CAS  Google Scholar 

  18. Trasatti S (1986) Pure Appl Chem 58:955

    Article  CAS  Google Scholar 

  19. Armstrong DA, Huie RE, Koppenol WH, Lymar SV, Merényi G, Neta P, Ruscic B, Stanbury DM, Steenken S, Wardman P (2015) Pure Appl Chem 87(11–12):1139–1150

    Article  CAS  Google Scholar 

  20. Bratsch SG (1989) J Phys Chem Ref Data 18:1–21

    Article  CAS  Google Scholar 

  21. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller A-F, Teixeira M, Valentine JS (2014) Chem Rev 114:3854–3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D’Souza F, Hsieh Y-Y, Deviprasad GR (1997) J Electroanal Chem 426:17–21

    Article  Google Scholar 

  23. Amanullah S, Das PK, Samanta S, Dey A (2015) Chem Commun 51:10010–10013

    Article  CAS  Google Scholar 

  24. Grinstaff MW, Hill MG, Birnbaum ER, Schaefer WP, Labinger JA, Gray HB (1995) Inorg Chem 34:4896–4902

    Article  CAS  Google Scholar 

  25. Mahammed A, Mondal B, Rana A, Dey A, Gross Z (2014) Chem Commun 50:2725–2727

    Article  CAS  Google Scholar 

  26. Mondal B, Sengupta K, Rana A, Mahammed A, Botoshansky M, Dey SG, Gross Z, Dey A (2013) Inorg Chem 52:3381–3387

    Article  CAS  PubMed  Google Scholar 

  27. Passard G, Ullman AM, Brodsky CN, Nocera DG (2016) J Am Chem Soc 138:2925–2928

    Article  CAS  PubMed  Google Scholar 

  28. Pegis ML, McKeown BA, Kumar N, Lang K, Wasylenko DJ, Zhang XP, Raugei S, Mayer JM (2016) ACS Central Sci 2:850–856

    Article  CAS  Google Scholar 

  29. Pegis ML, Wise CF, Koronkiewicz B, Mayer JM (2017) J Am Chem Soc 139:11000–11003

    Article  CAS  PubMed  Google Scholar 

  30. Amanullah S, Saha P, Saha R, Dey A (2019) Inorg Chem 58:152–164

    Article  CAS  PubMed  Google Scholar 

  31. Savéant J-M (2006) Elements of molecular and biomolecular electrochemistry: an electrochemical approach to electron transfer chemistry, Wiley, New York

    Book  Google Scholar 

  32. Chatterjee S, Sengupta K, Samanta S, Das PK, Dey A (2015) Inorg Chem 54:2383–2392

    Article  CAS  PubMed  Google Scholar 

  33. McCrory CCL, Ottenwaelder X, Stack TDP, Chidsey CED (2007) J Phys Chem A 111:12641–12650

    Article  CAS  PubMed  Google Scholar 

  34. McCrory CCL, Devadoss A, Ottenwaelder X, Lowe RD, Stack TDP, Chidsey CED (2011) J Am Chem Soc 133:3696–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thorseth MA, Letko CS, Rauchfuss TB, Gewirth AA (2011) Inorg Chem 50:6158–6162

    Article  CAS  PubMed  Google Scholar 

  36. Lee CH, Dogutan DK, Nocera DG (2011) J Am Chem Soc 133:8775–8777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Council of Scientific and Industrial Research (CSIR) Grant no. 01(2874)/17/EMR-II. S.A. acknowledges CSIR-SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Dey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amanullah, S., Dey, A. A bi-functional cobalt-porphyrinoid electrocatalyst: balance between overpotential and selectivity. J Biol Inorg Chem 24, 437–442 (2019). https://doi.org/10.1007/s00775-019-01670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01670-5

Keywords

Navigation