Skip to main content
Log in

Influence of heme c attachment on heme conformation and potential

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Heme c is characterized by its covalent attachment to a polypeptide. The attachment is typically to a CXXCH motif in which the two Cys form thioether bonds with the heme, “X” can be any amino acid other than Cys, and the His serves as a heme axial ligand. Some cytochromes c, however, contain heme attachment motifs with three or four intervening residues in a CX3CH or CX4CH motif. Here, the impacts of these variations in the heme attachment motif on heme ruffling and electronic structure are investigated by spectroscopically characterizing CX3CH and CX4CH variants of Hydrogenobacter thermophilus cytochrome c552. In addition, a novel CXCH variant is studied. 1H and 13C NMR, EPR, and resonance Raman spectra of the protein variants are analyzed to deduce the extent of ruffling using previously reported relationships between these spectral data and heme ruffling. In addition, the reduction potentials of these protein variants are measured using protein film voltammetry. The CXCH and CX4CH variants are found to have enhanced heme ruffling and lower reduction potentials. Implications of these results for the use of these noncanonical motifs in nature, and for the engineering of novel heme peptide structures, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reprinted with permission from Kleingardner and Bren [15], Copyright 2015 American Chemical Society

Fig. 2
Fig. 3

Reprinted with permission from Kleingardner et al. [40], Copyright 2013 American Chemical Society

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bowman SEJ, Bren KL (2008) Nat Prod Rep 25:1118–1130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck PMH (1999) Nature 400:476–480

    Article  CAS  PubMed  Google Scholar 

  3. Arciero DM, Hooper AB (1994) J Biol Chem 269:11878–11886

    CAS  PubMed  Google Scholar 

  4. Shimizu H, Schuller DJ, Lanzilotta WN, Sundaramoorthy M, Arciero DM, Hooper AB, Poulos TL (2001) Biochemistry 40:13483–13490

    Article  CAS  PubMed  Google Scholar 

  5. Wang YT, Graichen ME, Liu AM, Pearson AR, Wilmot CM, Davidson VL (2003) Biochemistry 42:7318–7325

    Article  CAS  PubMed  Google Scholar 

  6. Kagan VE, Tyurin VA, Jiang JF, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou MM, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232

    Article  CAS  PubMed  Google Scholar 

  7. Allen JWA (2011) FEBS J 278:4198–4216

    Article  CAS  PubMed  Google Scholar 

  8. Simon J, Hederstedt L (2011) FEBS J 278:4179–4188

    Article  CAS  PubMed  Google Scholar 

  9. Stevens JM, Mavridou DAI, Hamer R, Kritsiligkou P, Goddard AD, Ferguson SJ (2011) FEBS J 278:4170–4178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Babbitt SE, Sutherland MC, Francisco BS, Mendez DL, Kranz RG (2015) Trends Biochem Sci 40:446–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gabilly ST, Hamel PP (2017) Front Plant Sci 8:1313

    Article  PubMed Central  PubMed  Google Scholar 

  12. Allen JWA, Barker PD, Daltrop O, Stevens JM, Tomlinson EJ, Sinha N, Sambongi Y, Ferguson SJ (2005) Dalton Trans. https://doi.org/10.1039/b508139b (ISSN 1477-9226:3410-3418)

    Article  PubMed  Google Scholar 

  13. Asher WB, Bren KL (2012) Chem Commun 48:8344–8346

    Article  CAS  Google Scholar 

  14. Mavridou DAI, Ferguson SJ, Stevens JM (2013) IUBMB Life 65:209–216

    Article  CAS  PubMed  Google Scholar 

  15. Kleingardner JG, Bren KL (2015) Acc Chem Res 48:1845–1852

    Article  CAS  PubMed  Google Scholar 

  16. Jentzen W, Song XZ, Shelnutt JA (1997) J Phys Chem B 101:1684–1699

    Article  CAS  Google Scholar 

  17. Ma JG, Laberge M, Song XZ, Jentzen W, Jia SL, Zhang J, Vanderkooi JM, Shelnutt JA (1998) Biochemistry 37:5118–5128

    Article  CAS  PubMed  Google Scholar 

  18. Shokhireva TK, Berry RE, Uno E, Balfour CA, Zhang HJ, Walker FA (2003) Proc Natl Acad Sci USA 100:3778–3783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Michel LV, Ye T, Bowman SEJ, Levin BD, Hahn MA, Russell BS, Elliott SJ, Bren KL (2007) Biochemistry 46:11753–11760

    Article  CAS  PubMed  Google Scholar 

  20. Liptak MD, Wen X, Bren KL (2010) J Am Chem Soc 132:9753–9763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Can M, Zoppellaro G, Andersson KK, Bren KL (2011) Inorg Chem 50:12018–12024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Galinato MGI, Kleingardner JG, Bowman SEJ, Alp EE, Zhao J, Bren KL, Lehnert N (2012) Proc Natl Acad Sci USA 109:8896–8900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sun Y, Benabbas A, Zeng W, Kleingardner JG, Bren KL, Champion PM (2014) Proc Natl Acad Sci USA 111:6570–6575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Galinato MGI, Bowman SEJ, Kleingardner JG, Martin S, Zhao J, Sturhahn W, Alp EE, Bren KL, Lehnert N (2015) Biochemistry 54:1064–1076

    Article  CAS  PubMed  Google Scholar 

  25. Bren KL (2016) Isr J Chem 56:693–704

    Article  CAS  Google Scholar 

  26. Hobbs JD, Shelnutt JA (1995) J Protein Chem 14:19–25

    Article  CAS  PubMed  Google Scholar 

  27. Ma JG, Zhang J, Franco R, Jia SL, Moura I, Moura JJG, Kroneck PMH, Shelnutt JA (1998) Biochemistry 37:12431–12442

    Article  CAS  PubMed  Google Scholar 

  28. Travaglini-Allocatelli C, Gianni S, Dubey VK, Borgia A, Di Matteo A, Bonivento D, Cutruzzolà F, Bren KL, Brunori M (2005) J Biol Chem 280:25729–25734

    Article  CAS  PubMed  Google Scholar 

  29. Cheng RJ, Chen PY, Gau PR, Chen CC, Peng SM (1997) J Am Chem Soc 119:2563–2569

    Article  CAS  Google Scholar 

  30. Shelnutt JA, Song XZ, Ma JG, Jia SL, Jentzen W, Medforth CJ (1998) Chem Soc Rev 27:31–41

    Article  CAS  Google Scholar 

  31. Jentzen W, Ma JG, Shelnutt JA (1998) Biophys J 74:753–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hasegawa J, Yoshida T, Yamazaki T, Sambongi Y, Yu Y, Igarashi Y, Kodama T, Yamazaki K, Kyogoku Y, Kobayashi Y (1998) Biochemistry 37:9641–9649

    Article  CAS  PubMed  Google Scholar 

  33. Kleingardner JG, Bren KL (2011) Metallomics 3:396–403

    Article  CAS  PubMed  Google Scholar 

  34. Braun M, Thöny-Meyer L (2004) Proc Natl Acad Sci USA 101:12830–12835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kleingardner EC, Asher WB, Bren KL (2017) Biochemistry 56:143–148

    Article  CAS  PubMed  Google Scholar 

  36. Kleingardner JG, Kandemir B, Bren KL (2014) J Am Chem Soc 136:4–7

    Article  CAS  PubMed  Google Scholar 

  37. Rivera M, Walker FA (1995) Anal Biochem 230:295–302

    Article  CAS  PubMed  Google Scholar 

  38. Ye T, Kaur R, Wen X, Bren KL, Elliott SJ (2005) Inorg Chem 44:8999–9006

    Article  CAS  PubMed  Google Scholar 

  39. Fourmond V, Hoke K, Heering HA, Baffert C, Leroux F, Bertrand P, Leger C (2009) Bioelectrochemistry 76:141–147

    Article  CAS  PubMed  Google Scholar 

  40. Kleingardner JG, Bowman SEJ, Bren KL (2013) Inorg Chem 52:12933–12946

    Article  CAS  PubMed  Google Scholar 

  41. Bren KL (2007) In: Scott RA, Lukehart CM (eds) Application of physical methods to inorganic and bioinorganic chemistry. Wiley, Chichester, pp 357–384

    Google Scholar 

  42. Takayama SJ, Takahashi Y, Mikami S, Irie K, Kawano S, Yamamoto Y, Hemmi H, Kitahara R, Yokoyama S, Akasaka K (2007) Biochemistry 46:9215–9224

    Article  CAS  PubMed  Google Scholar 

  43. Zhong L, Wen X, Rabinowitz TM, Russell BS, Karan EF, Bren KL (2004) Proc Natl Acad Sci USA 101:8637–8642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bowman SEJ, Bren KL (2010) Inorg Chem 49:7890–7897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Karan EF, Russell BS, Bren KL (2002) J Biol Inorg Chem 7:260–272

    Article  CAS  PubMed  Google Scholar 

  46. Nakamura M (2006) Coord Chem Rev 250:2271–2294

    Article  CAS  Google Scholar 

  47. Shokhireva TK, Shokhirev NV, Berry RE, Zhang HJ, Walker FA (2008) J Biol Inorg Chem 13:941–959

    Article  CAS  PubMed  Google Scholar 

  48. Walker FA (2003) Inorg Chem 42:4526–4544

    Article  CAS  PubMed  Google Scholar 

  49. Bren KL (2015) In: Swart M, Costas M (eds) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity. Wiley, Chichester, pp 409–434

    Chapter  Google Scholar 

  50. Shokhirev NV, Walker FA (1998) J Biol Inorg Chem 3:581–594

    Article  CAS  Google Scholar 

  51. Hu SZ, Morris IK, Singh JP, Smith KM, Spiro TG (1993) J Am Chem Soc 115:12446–12458

    Article  CAS  Google Scholar 

  52. Czernuszewicz RS, Li XY, Spiro TG (1989) J Am Chem Soc 111:7024–7031

    Article  CAS  Google Scholar 

  53. Song XZ, Jentzen W, Jia SL, Jaquinod L, Nurco DJ, Medforth CJ, Smith KM, Shelnutt JA (1996) J Am Chem Soc 118:12975–12988

    Article  CAS  Google Scholar 

  54. Taylor CPS (1977) Biochim Biophys Acta 491:137–149

    Article  CAS  PubMed  Google Scholar 

  55. Castner TJ Jr (1959) Phys Rev 115:1506–1515

    Article  CAS  Google Scholar 

  56. Zoppellaro G, Harbitz E, Kaur R, Ensign AA, Bren KL, Andersson KK (2008) J Am Chem Soc 130:15348–15360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Zoppellaro G, Bren KL, Ensign AA, Harbitz E, Kaur R, Hersleth H-P, Ryde U, Hederstedt L, Andersson KK (2009) Biopolymers 91:1064–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Can M, Krucinska J, Zoppellaro G, Andersen NH, Wedekind JE, Hersleth H-P, Andersson KK, Bren KL (2013) ChemBioChem 14:1828–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. La Mar GN, Horrocks WD Jr, Holm RH (eds) (1973) NMR of paramagnetic molecules: principles and applications. Academic, New York

    Google Scholar 

  60. Bertini I, Luchinat C (1986) NMR of paramagnetic molecules in biological systems. Benjamin Cummings, Menlo Park

    Google Scholar 

  61. Walker FA (1999) Coord Chem Rev 186:471–534

    Article  Google Scholar 

  62. Graves AB, Graves MT, Liptak MD (2016) J Phys Chem B 120:3844–3853

    Article  CAS  PubMed  Google Scholar 

  63. Brautigan DL, Feinberg BA, Hoffman BM, Margoliash E, Peisach J, Blumberg WE (1977) J Biol Chem 252:574–582

    CAS  PubMed  Google Scholar 

  64. Yang F, Knipp M, Shokhireva TK, Berry RE, Zhang HJ, Walker FA (2009) J Biol Inorg Chem 14:1077–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Graves AB, Horak EH, Liptak MD (2016) Dalton Trans 45:10058–10067

    Article  CAS  PubMed  Google Scholar 

  66. Anderson KK, Hobbs JD, Luo LA, Stanley KD, Quirke JME, Shelnutt JA (1993) J Am Chem Soc 115:12346–12352

    Article  CAS  Google Scholar 

  67. Barkigia KM, Chantranupong L, Smith KM, Fajer J (1988) J Am Chem Soc 110:7566–7567

    Article  CAS  Google Scholar 

  68. Maes EM, Roberts SA, Weichsel A, Montfort WR (2005) Biochemistry 44:12690–12699

    Article  CAS  PubMed  Google Scholar 

  69. Aragao D, Frazao C, Sieker L, Sheldrick GM, LeGall J, Carrondo MA (2003) Acta Crystallogr Sect D Biol Crystallogr 59:644–653

    Article  Google Scholar 

  70. Devreese B, Brige A, Backers K, Van Driessche G, Meyer TE, Cusanovich MA, Van Beeumen JJ (2000) Arch Biochem Biophys 381:53–60

    Article  CAS  PubMed  Google Scholar 

  71. Berezhna S, Wohlrab H, Champion PM (2003) Biochemistry 42:6149–6158

    Article  CAS  PubMed  Google Scholar 

  72. Marques HM (2007) Dalton Trans 39:4371–4385

    Article  Google Scholar 

  73. Gong C, Shen Y, Chen J, Song Y, Chen S, Song Y, Wang L (2017) Sens Actuators B 239:890–897

    Article  CAS  Google Scholar 

  74. Neumann B, Kielb P, Rustam L, Fischer A, Weidinger IM, Wollenberger U (2017) ChemElectroChem 4:913–919

    Article  CAS  Google Scholar 

  75. Korri-Youssoufi H, Desbenoit N, Ricoux R, Mahy JP, Lecomte S (2008) Mater Sci Eng C 28:855–860

    Article  CAS  Google Scholar 

  76. Ramanavicius A, Kausaite A, Ramanaviciene A (2005) Biosens Bioelectron 20:1962–1967

    Article  CAS  PubMed  Google Scholar 

  77. Ramanavicius A, Ramanaviciene A (2009) Fuel Cells 9:25–36

    Article  CAS  Google Scholar 

  78. Ramanavicius A, Kausaite A, Ramanaviciene A (2008) Biosens Bioelectron 24:761–766

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, Grant No. DE-FG02-09ER16121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara L. Bren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleingardner, J.G., Levin, B.D., Zoppellaro, G. et al. Influence of heme c attachment on heme conformation and potential. J Biol Inorg Chem 23, 1073–1083 (2018). https://doi.org/10.1007/s00775-018-1603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1603-3

Keywords

Navigation