Skip to main content
Log in

Synthesis and characterization of an unsymmetrical cobalt(III) active site analogue of nitrile hydratase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The design, synthesis, and characterization of an unsymmetrical diamidato-dithiol ligand (H4 1, where the hydrogen atoms represent deprotonatable amide and thiol protons) and its cobalt(III) complex, a synthetic analogue of the cobalt-containing nitrile hydratase enzyme family, are reported. The ligand was prepared in 24% yield from an overall eight-step synthetic pathway following a modified protocol established in our laboratory that includes two peptide couples using O-(1H-benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate as the coupling agent. The ligand and all precursors were characterized by NMR spectroscopy and elemental analysis. The cobalt nitrile hydratase synthetic analogue complex [NBu4][Co(1)] was prepared on deprotonating ligand H4 1 to [1]4− on addition of 5 equiv of NaH in N,N-dimethylformamide and adding 1 equiv of CoCl2 at −40 °C under a N2 atmosphere followed by oxidizing the complex by stirring it overnight open to dry air. The complex [NBu4][Co(1)] was isolated after counterion exchange with 1 equiv of NBu4Cl followed by crystallization from MeCN/Et2O in 71% yield. The structure of the complex was confirmed by X-ray diffraction analysis. Cyclic voltammetry studies on [NBu4][Co(1)] in a 0.1 M [NBu4][PF6]/MeCN solution showed a quasi-reversible reduction potential at −1.1 V (vs. Ag/AgCl), and magnetic susceptibility investigations indicated the complex is paramagnetic in both the solid and the solution states as determined from inverse-Gouy and Evans NMR methods, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Intini FP, Lanfranchi M, Natile G, Pacifico C, Tiripicchio A (1996) Inorg Chem 35:1715–1717

    Article  PubMed  CAS  Google Scholar 

  2. Ghosh A, de Oliveira FT, Yano T, Nishioka T, Beach ES, Kinoshita I, Münck E, Ryabov AD, Horowitz CP, Collins TJ (2005) J Am Chem Soc 127:2505–2513

    Article  PubMed  CAS  Google Scholar 

  3. Meyer M, Frémond L, Espinosa E, Guilard R, Ou Z, Kadish KM (2004) Inorg Chem 43:5572–5587

    Article  PubMed  CAS  Google Scholar 

  4. Henderson W, Oliver AG, Rickard CEF (2000) Inorg Chim Acta 307:144

    Article  CAS  Google Scholar 

  5. Patten TE, Troeltzsch C, Olmstead MM (2005) Inorg Chem 44:9197–9206

    Article  PubMed  CAS  Google Scholar 

  6. Pelagatti P, Carcelli M, Calbiani F, Cassi C, Elviri L, Pelizzi C, Rizzotti U, Rogolino D (2005) Organometallics 24:5836–5844

    Article  CAS  Google Scholar 

  7. McPherson LD, Drees M, Khan SI, Strassner T, Abu-Omar MM (2004) Inorg Chem 43:4036–4050

    Article  PubMed  CAS  Google Scholar 

  8. Battacharya S, Snehalatha K, Kumar VP (2003) J Org Chem 68:2741–2747

    Article  Google Scholar 

  9. Lee BY, Bu X, Bazan GC (2001) Organometallics 20:5425–5431

    Article  CAS  Google Scholar 

  10. Nishino S, Kunita M, Kani Y, Ohba S, Matsushima H, Tokii T, Nishida Y (2000) Inorg Chem Commun 3:145–148

    Article  CAS  Google Scholar 

  11. Ishikawa Y, Ito S, Nishino S, Ohba S, Nishida Y (1998) Z Naturforsch C J Biosci 53:378–382

    CAS  Google Scholar 

  12. Rojas RS, Wasilke JC, Wu G, Ziller JW, Bazan GC (2005) Organometallics 24(23):5644–5653

    Article  CAS  Google Scholar 

  13. Kwon HY, Lee SY, Lee BY, Shin DM, Chung YK (2004) Dalton Trans 6:921–928

    Article  PubMed  Google Scholar 

  14. Mayer SM, Lawson DM, Gormal CA, Roe SM, Smith BE (1999) J Mol Biol 292:871–891

    Article  PubMed  CAS  Google Scholar 

  15. Jeannine MC, Christiansen J, Dean DR, Seefeldt LC (1999) Biochemistry 38:5779–5785

    Article  Google Scholar 

  16. Loew GH, Harris DL (2000) Chem Rev 100:407–419

    Article  PubMed  CAS  Google Scholar 

  17. Harrop TC, Mascharak PK (2005) Coord Chem Rev 249(24):3007–3024

    Article  CAS  Google Scholar 

  18. Riordan CG (2004) J Biol Inorg Chem 9:509–510

    CAS  Google Scholar 

  19. Aloj L, Panico M, Caraco C, Del Vecchio S, Arra C, Affuso A, Accardo A, Mansi R, Tesauro D, De Luca S, Pedone C, Visentin R, Mazzi U, Morelli G, Salvatore M (2004) Cancer Biother Radiopharm 19(1):93–98

    Article  PubMed  CAS  Google Scholar 

  20. Jurisson SS, Lydon JD (1999) Chem Rev 99:2205–2218

    Article  PubMed  CAS  Google Scholar 

  21. Liu S, Edwards DS (1999) Chem Rev 99:2235–2268

    Article  PubMed  CAS  Google Scholar 

  22. Garribba E, Lodyga-Chruscinska E, Micera G, Panzanelli A, Sanna D (2005) Eur J Inorg Chem 7:1369–1382

    Article  Google Scholar 

  23. Wang D, Behrens A, Farahbakhsh M, Gatjens J, Rehder D (2003) Chem Eur J 9(8):1805–1813

    Article  CAS  Google Scholar 

  24. Brown DR, Kozlowski H (2004) Dalton Trans 13:1907–1917

  25. Millhauser GL (2004) Acc Chem Res 37:79–85

    Article  PubMed  CAS  Google Scholar 

  26. Yamada H, Kobayashi M (1996) Biosci Biotechnol Biochem 9:1391–1400

    Article  Google Scholar 

  27. Kobayashi S, Shimizu S (1998) Nat Biotechnol 16:733–736

    Article  PubMed  CAS  Google Scholar 

  28. Wyatt JM, Knowles KC (1995) Int Biodeterior Biodegrad 35:227–248

    Article  CAS  Google Scholar 

  29. Maddrell SJ, Turner NJ, Crosby J (1996) Tetrahedron Lett 37:6001–6004

    Article  CAS  Google Scholar 

  30. Hourai S, Miki M, Takashima Y, Mitsuda S, Yanagi K (2003) Biochem Biophys Res Commun 312:340–345

    Article  PubMed  CAS  Google Scholar 

  31. Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Biochem Biophys Res Commun 288:1169–1174

    Article  PubMed  CAS  Google Scholar 

  32. Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Masafumi O, Yohda M, Kamiya N, Endo I (1998) Nat Struct Biol 5:347–351

    Article  PubMed  CAS  Google Scholar 

  33. Stevens JM, Belghazi M, Jaouen M, Bonnet D, Schmitter JM, Mansuy D, Sari MA, Artaud I (2003) J Mass Spectrom 38:955–961

    Article  PubMed  CAS  Google Scholar 

  34. Murakami T, Nojiri M, Nakayama H, Odaka M, Yohda M, Dohmae N, Takio K, Nagamune T, Endo I (2000) Protein Sci 9:1024–1030

    Article  PubMed  CAS  Google Scholar 

  35. Piersma SR, Nojiri M, Tsujimura M, Noguchi T, Odaka M, Yohda M, Inoue Y, Ambe F, Endo I (2000) J Inorg Biochem 80:283–288

    Article  PubMed  CAS  Google Scholar 

  36. Nojiri M, Nakayama H, Odaka M, Yohda M, Takio K, Endo I (2000) FEBS Lett 465:173–177

    Article  PubMed  CAS  Google Scholar 

  37. Odaka M, Tsujimura M, Endo I (2001) RIKEN 41:58–60

    Google Scholar 

  38. Kovacs JA (2004) Chem Rev 104:825–848

    Article  PubMed  CAS  Google Scholar 

  39. Harrop TC, Mascharak PK (2004) Acc Chem Res 37:253–260

    Article  PubMed  CAS  Google Scholar 

  40. Yano T, Ozawa T, Masuda H (2008) Chem Lett 37(7):672–677

    Article  CAS  Google Scholar 

  41. Trost BM, Van Vranken DL, Bingel C (1992) J Am Chem Soc 114:9327–9342

    Article  CAS  Google Scholar 

  42. Bruker AXS (2003) SADABS Bruker Nonius area detector scaling and absorption correction—version 2.10. Bruker AXS, Madison

  43. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  PubMed  Google Scholar 

  44. Angelosante JK, Lewis BJ, Cooper LE, Swanson RA, Daley CJA (2006) Phosphorous Sulfur Silicon Relat Elem 181:2263–2376

    Article  CAS  Google Scholar 

  45. Pattenden G, Shuker AJ (1992) J Chem Soc Perkin Trans 1:1215–1221

    Google Scholar 

  46. Kaestle KL, Anwer MK, Audhya TK, Goldstein G (1991) Tetrahedron Lett 32:327–330

    Article  CAS  Google Scholar 

  47. Lin WW, Jang YJ, Wang Y, Liu JT, Hu SR, Wang LY, Yao CF (2001) J Org Chem 66:1984–1991

    Article  PubMed  CAS  Google Scholar 

  48. Carroll FI, White JD, Wall ME (1963) J Org Chem 28:1240–1243

    Article  CAS  Google Scholar 

  49. Zienkiewicz J, Kaszynski P, Young VG Jr (2004) J Org Chem 69:2551–2561

    Article  PubMed  CAS  Google Scholar 

  50. Tyler LA, Noveron JC, Olmstead MO, Mascharak PK (2000) Inorg Chem 39:357–362

    Article  PubMed  CAS  Google Scholar 

  51. Ellison JJ, Nienstedt A, Shoner SC, Barnhart D, Cowen JA, Kovacs JA (1998) J Am Chem Soc 120:5691–5700

    Article  CAS  Google Scholar 

  52. Chatel S, Rat M, Dijols S, Leduc P, Tuchagues JP, Mansuy D, Artaud I (2000) J Inorg Biochem 80:239–246

    Article  PubMed  CAS  Google Scholar 

  53. Yano T, Wasada-Tsutsui Y, Kajita Y, Shibayama T, Funahasi Y, Ozawa T, Masuda H (2008) Chem Lett 37:66–67

    Article  CAS  Google Scholar 

  54. Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Biochem Biophys 288:1169–1174

    Article  CAS  Google Scholar 

  55. Schubert EM (1992) J Chem Ed 69(1):62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are pleased to acknowledge the financial support of the National Science Foundation (NSF-RUI), the Research Corporation (Cottrell College #CC6100), the Dreyfus Foundation (Faculty start-up), the American Philosophical Society (Franklin Research Grant), and the Offices of Sponsored Research at both the University of San Diego and Western Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. A. Daley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelosante, J.K., Schopp, L.M., Lewis, B.J. et al. Synthesis and characterization of an unsymmetrical cobalt(III) active site analogue of nitrile hydratase. J Biol Inorg Chem 16, 937–947 (2011). https://doi.org/10.1007/s00775-011-0794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0794-7

Keywords

Navigation