Skip to main content
Log in

Steric hindrance effect of the equatorial ligand on Fe(IV)O and Ru(IV)O complexes: a density functional study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The geometric structures and mechanisms for hydrogen abstraction from cyclohexane for four high-valent complexes, [FeIV(O)(TMC)(NCMe)]2+ (where TMC is 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane; 1-NCMe), the inverted isomer [FeIV(NCMe)(TMC)(O)]2+ (2-NCMe), [RuIV(O)(TMC)(NCMe)]2+ (the ruthenium analogue of 1-NCMe; 3-NCMe), and the inverted isomer [RuIV(NCMe)(TMC)(O)]2+ (4-NCMe), were investigated using density functional theory. The axial NCMe ligand was found to be sterically more hindered in 2-NCMe than in 1-NCMe, which is in accord with the calculated results that the Fe–Laxial distance is longer in the former. Both 1-NCMe and 2-NCMe are capable of hydrogen abstraction from cyclohexane via two-state reactivity patterns. In contrast, 3-NCMe and 4-NCMe react with cyclohexane by a single-state mechanism. The reaction pathways computed reveal that 2-NCMe is more reactive than 1-NCMe, in agreement with experimental results, whereas the reactivity of 3-NCMe and 4-NCMe shows little dependence on whether the oxo unit is syn or anti to the four N-methyl groups. Our analysis shows that along the reaction pathway for 2-NCMe in the triplet spin state, the NCMe ligand moves away from the iron center, and therefore the energy of the \( \sigma_{z}^{* 2} \) (α-spin) orbital decreases and an electron is transferred to this orbital. Finally, we calculated the kinetic isotope effect and investigated the relationship between this effect and reaction barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Que L Jr, Ho RYN (1996) Chem Rev 96:2607–2624

    Article  CAS  PubMed  Google Scholar 

  2. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986

    Article  CAS  PubMed  Google Scholar 

  3. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–350

    Article  CAS  PubMed  Google Scholar 

  4. Bernasconi L, Louwerse MJ, Baerends EJ (2007) Eur J Inorg Chem 3023–3033

  5. Shan XP, Que L Jr (2006) J Inorg Biochem 100:421–433

    Article  CAS  PubMed  Google Scholar 

  6. Que L Jr (2007) Acc Chem Res 40:493–500

    Article  CAS  PubMed  Google Scholar 

  7. Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L Jr (2003) Science 299:1037–1039

    Article  CAS  PubMed  Google Scholar 

  8. Lim MH, Rohde J-U, Stubna A, Bukowski MR, Costas M, Ho RYN, Münck E, Nam W, Que L Jr (2003) Proc Natl Acad Sci USA 100:3665–3670

    Article  CAS  PubMed  Google Scholar 

  9. Balland V, Charlot M-F, Banse F, Girerd J-J, Mattioli TA, Bill E, Bartoli J-F, Battioni P, Mansuy D (2004) Eur J Inorg Chem 301–308

  10. Klinker EJ, Kaizer J, Brennessel WW, Woodrum NL, Cramer CJ, Que L Jr (2005) Angew Chem Int Ed 44:3690–3694

    Article  CAS  Google Scholar 

  11. Grapperhaus CA, Mienert B, Bill E, Weyhermüller T, Wieghardt K (2000) Inorg Chem 39:5306–5317

    Article  CAS  PubMed  Google Scholar 

  12. Martinho M, Banse F, Bartoli J-F, Mattioli TA, Battioni P, Horner O, Bourcier S, Girerd J-J (2005) Inorg Chem 44:9592–9596

    Article  CAS  PubMed  Google Scholar 

  13. Bukowski MR, Koehntop KD, Stubna A, Bominaar EL, Halfen JA, Münck E, Nam W, Que L Jr (2005) Science 310:1000–1002

    Article  CAS  PubMed  Google Scholar 

  14. Ray K, England J, Fiedler AT, Martinho M, Münck E, Que L Jr (2008) Angew Chem Int Ed 47:8068–8071

    Article  CAS  Google Scholar 

  15. Nam W (2007) Acc Chem Res 40:522–531

    Article  CAS  PubMed  Google Scholar 

  16. Jackson TA, Rohde J-U, Seo MS, Sastri CV, DeHont R, Stubna A, Ohta T, Kitagawa T, Münck E, Nam W, Que L Jr (2008) J Am Chem Soc 130:12394–12407

    Article  CAS  PubMed  Google Scholar 

  17. Sastri CV, Park MJ, Ohta T, Jackson TA, Stubna A, Seo MS, Lee J, Kim J, Kitagawa T, Münck E, Que L Jr, Nam W (2005) J Am Chem Soc 127:12494–12495

    Article  CAS  PubMed  Google Scholar 

  18. Hirao H, Kumar D, Que L Jr, Shaik S (2006) J Am Chem Soc 128:8590–8606

    Article  CAS  PubMed  Google Scholar 

  19. Decker A, Rohde J-U, Klinker EJ, Wong SD, Que L Jr, Solomon EI (2007) J Am Chem Soc 129:15983–15996

    Article  CAS  PubMed  Google Scholar 

  20. Decker A, Clay MD, Solomon EI (2006) J Inorg Biochem 100:697–706

    Article  CAS  PubMed  Google Scholar 

  21. Decker A, Rohde J-U, Que L Jr, Solomon EI (2004) J Am Chem Soc 126:5378–5379

    Article  CAS  PubMed  Google Scholar 

  22. Decker A, Solomon EI (2005) Angew Chem Int Ed 44:2252–2255

    Article  CAS  Google Scholar 

  23. Decker A, Solomon EI (2005) Curr Opin Chem Biol 9:152–163

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Wang Y, Han K-L (2008) Chem J Chin Univ 2469–2473

  25. Hirao H, Que L Jr, Nam W, Shaik S (2008) Chem Eur J 14:1740–1756

    Article  CAS  Google Scholar 

  26. Sastri CV, Lee J, Oh K, Lee YJ, Lee J, Jackson TA, Ray K, Hirao H, Shin W, Halfen JA, Kim J, Que L Jr, Shaik S, Nam W (2007) Proc Natl Acad Sci USA 104:19181–19186

    Article  CAS  PubMed  Google Scholar 

  27. Rohde J-U, Que L Jr (2005) Angew Chem Int Ed 44:2255–2258

    Article  CAS  Google Scholar 

  28. Dhuri SN, Seo MS, Lee Y-M, Hirao H, Wang Y, Nam W, Shaik S (2008) Angew Chem Int Ed 47:3356–3359

    Article  CAS  Google Scholar 

  29. Che C-M, Wong K-Y, Mak TCW (1985) J Chem Soc Chem Commun 546–548

  30. Sharma PK, de Visser SP, Ogliaro F, Shaik S (2003) J Am Chem Soc 125:2291–2300

    Article  CAS  PubMed  Google Scholar 

  31. Ogliaro F, de Visser SP, Groves JT, Shaik S (2001) Angew Chem Int Ed 40:2874–2878

    Article  CAS  Google Scholar 

  32. Gross Z, Ini S (1999) Inorg Chem 38:1446–1449

    Article  CAS  Google Scholar 

  33. Groves JT, Roman JS (1995) J Am Chem Soc 117:5594–5595

    Article  CAS  Google Scholar 

  34. Groves JT, Quinn R (1985) J Am Chem Soc 107:5790–5792

    Article  CAS  Google Scholar 

  35. Frisch MJ et al (2004) Gaussian 03, revision D.01. Gaussian, Wallingford

  36. Becke AD (1992) J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  37. Becke AD (1992) J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  40. Hay JP, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  41. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao YX (1999) J Phys Chem A 103:1913–1928

    Article  CAS  Google Scholar 

  42. de Visser SP (2006) J Am Chem Soc 128:9813–9824

    Article  PubMed  Google Scholar 

  43. de Visser SP (2006) J Am Chem Soc 128:15809–15818

    Article  PubMed  Google Scholar 

  44. Wang Y, Wang Y, Han K-L (2009) J Biol Inorg Chem 14:533–545

    Article  CAS  PubMed  Google Scholar 

  45. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  46. Melander L, Saunders WH Jr (1987) In: Reaction rates of isotopic molecules, chap 2. Krieger, Malabar

  47. Handy NC, Cohen AJ (2001) Mol Phys 99:403–412

    Article  CAS  Google Scholar 

  48. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  50. Michel C, Baerends EJ (2009) Inorg Chem 48:3628–3638

    Article  CAS  PubMed  Google Scholar 

  51. Neese F (2006) J Inorg Biochem 100:716–726

    Article  CAS  PubMed  Google Scholar 

  52. SchÖneboom JC, Neese F, Thiel W (2005) J Am Chem Soc 127:5840–5853

    Article  PubMed  Google Scholar 

  53. Shaik S, Hirao H, Kumar D (2007) Acc Chem Res 40:532–542

    Article  CAS  PubMed  Google Scholar 

  54. Kumar D, Hirao H, Que L Jr, Shaik S (2005) J Am Chem Soc 127:8026–8027

    Article  CAS  PubMed  Google Scholar 

  55. Shaik S, Danovich D, Fiedler A, Schröder D, Schwarz H (1995) Helv Chem Acta 78:1393–1407

    Article  CAS  Google Scholar 

  56. Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  PubMed  Google Scholar 

  57. Shaik S, Kumar D, de Visser SP (2008) J Am Chem Soc 130:10128–10140

    Article  CAS  PubMed  Google Scholar 

  58. Sharma PK, de Visser SP, Shaik S (2003) J Am Chem Soc 125:8698–8699

    Article  CAS  PubMed  Google Scholar 

  59. Godfrey E, Porro CS, de Visser SP (2008) J Phys Chem A 112:2464–2468

    Article  CAS  PubMed  Google Scholar 

  60. Aluri S, de Visser SP (2007) J Am Chem Soc 129:14846–14847

    Article  CAS  PubMed  Google Scholar 

  61. de Visser SP, Oh K, Han A-R, Nam W (2007) Inorg Chem 46:4632–4641

    Article  PubMed  Google Scholar 

  62. de Visser SP, Nam W (2008) J Phys Chem A 112:12887–12895

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NKBRSF (2007CB815202) and NSFC (20833008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keli Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Han, K. Steric hindrance effect of the equatorial ligand on Fe(IV)O and Ru(IV)O complexes: a density functional study. J Biol Inorg Chem 15, 351–359 (2010). https://doi.org/10.1007/s00775-009-0607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0607-4

Keywords

Navigation