Skip to main content
Log in

Pseudoenzymatic dealkylation of alkyltins by biological dithiols

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We investigated the time dependence of the degradation of three alkyltin derivatives by a nine amino acid linear peptide (I1LGCWCYLR9) containing a CXC motif derived from the primary sequence of stannin, a membrane protein involved in alkyltin toxicity. We monitored the reaction kinetics using the intrinsic fluorescence of the tryptophan residue in position 5 of the peptide and found that all of the alkyltins analyzed are progressively degraded to dialkyl derivatives, following a pseudoenzymatic reaction mechanism. The end point of the reactions is the formation of a covalent complex between the disubstituted alkyltin and the peptide cysteines. These data agree with the speciation profiles proposed for polysubstituted alkyltins in the environment and reveal a possible biotic degradation pathway for these toxic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

Abbreviations

ESI-MS:

Electrospray ionization mass spectrometry

SNN:

Stannin

TET:

Triethyltin chloride

TetraMT:

Tetramethyltin

TMT:

Trimethyltin chloride

References

  1. Fent K (2004) Toxicology 205:223–240. doi:10.1016/j.tox.2004.06.060

    Article  CAS  PubMed  Google Scholar 

  2. Fent K (1996) Crit Rev Toxicol 26:1–117

    Article  CAS  PubMed  Google Scholar 

  3. Gadd GM (2000) Sci Total Environ 258:119–127

    Article  CAS  PubMed  Google Scholar 

  4. Hoch M (2001) Appl Geochem 16:119–127

    Article  Google Scholar 

  5. Philbert MA, Billingsley ML, Reuhl KR (2000) Toxicol Pathol 28:43–53

    Article  CAS  PubMed  Google Scholar 

  6. Ogita K, Nishiyama N, Sugiyama C, Higuchi K, Yoneyama M, Yoneda Y (2005) J Neurosci Res 82:609–621. doi:10.1002/jnr.20678

    Article  CAS  PubMed  Google Scholar 

  7. Shintani N, Ogita K, Hashimoto H, Baba A (2007) Yakugaku Zasshi 127:451–461

    Article  CAS  PubMed  Google Scholar 

  8. Gielen M (1995) Met Based Drugs 2:99–103. doi:10.1155/MBD.1995.99

    Article  CAS  PubMed  Google Scholar 

  9. Gielen M (1994) Met Based Drugs 1:213–219. doi:10.1155/MBD.1994.213

    Article  CAS  PubMed  Google Scholar 

  10. Gielen M, Biesemans M, de Vos D, Willem R (2000) J Inorg Biochem 79:139–145

    Article  CAS  PubMed  Google Scholar 

  11. Costa MA, Gulino L, Pellerito L, Fiore T, Pellerito C, Barbieri G (2009) Oncol Rep 21:593–599

    CAS  PubMed  Google Scholar 

  12. Costa MA, Pellerito L, Izzo V, Fiore T, Pellerito C, Melis M, Musmeci MT, Barbieri G (2006) Cancer Lett 238:284–294. doi:10.1016/j.canlet.2005.07.021

    Article  CAS  PubMed  Google Scholar 

  13. Boyer IJ (1989) Toxicology 55:253–298

    Article  CAS  PubMed  Google Scholar 

  14. Feldman RG, White RF, Eriator II (1993) Arch Neurol 50:1320–1324

    CAS  PubMed  Google Scholar 

  15. Kreyberg S, Torvik A, Bjorneboe A, Wiik-Larsen W, Jacobsen D (1992) Clin Neuropathol 11:256–259

    CAS  PubMed  Google Scholar 

  16. Hwang CH (2009) Neurol Sci. doi:10.1007/s10072-009-0028-8

  17. Aschner M, Aschner JL (1992) Neurosci Biobehav Rev 16:427–435

    Article  CAS  PubMed  Google Scholar 

  18. Aschner M, Gannon M, Kimelberg HK (1992) Brain Res 582:181–185

    Article  CAS  PubMed  Google Scholar 

  19. Milaeva E, Petrosyan V, Berberova N, Pimenov Y, Pellerito L (2004) Bioinorg Chem Appl 69–91. doi:10.1155/S1565363304000068

  20. Buck-Koehntop BA, Porcelli F, Lewin JL, Cramer CJ, Veglia G (2006) J Organomet Chem 691:1748–1755

    Article  CAS  Google Scholar 

  21. Arakawa Y, Wada O, Yu TH, Iwai H (1981) J Chromatogr 216:209–217

    Article  CAS  PubMed  Google Scholar 

  22. Karpiak VC, Bridges RJ, Eyer CL (2001) J Toxicol Environ Health A 63:273–287

    Article  CAS  PubMed  Google Scholar 

  23. Karpiak VC, Eyer CL (1999) Cell Biol Toxicol 15:261–268

    Article  CAS  PubMed  Google Scholar 

  24. Diez S, Jover E, Albaiges J, Bayona JM (2006) Environ Int 32:858–865. doi:10.1016/j.envint.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  25. Gallert C, Winter J (2002) Water Res 36:3130–3140

    Article  CAS  PubMed  Google Scholar 

  26. Harino H, Yamamoto Y, Eguchi S, Kawai S, Kurokawa Y, Arai T, Ohji M, Okamura H, Miyazaki N (2007) Arch Environ Contam Toxicol 52:179–188. doi:10.1007/s00244-006-0087-2

    Article  CAS  PubMed  Google Scholar 

  27. Horiguchi T, Kojima M, Hamada F, Kajikawa A, Shiraishi H, Morita M, Shimizu M (2006) Environ Health Perspect 114(Suppl 1):13–19

    PubMed  Google Scholar 

  28. Mundy WR, Freudenrich TM (2006) Neurotoxicology 27:71–81. doi:10.1016/j.neuro.2005.07.007

    Article  CAS  PubMed  Google Scholar 

  29. Rudel H, Muller J, Steinhanses J, Schroter-Kermani C (2007) Chemosphere 66:1884–1894. doi:10.1016/j.chemosphere.2006.08.014

    Article  PubMed  Google Scholar 

  30. Voulvoulis N, Lester JN (2006) Sci Total Environ 371:373–382. doi:10.1016/j.scitotenv.2006.08.024

    Article  CAS  PubMed  Google Scholar 

  31. Wuertz S, Miller CE, Pfister RM, Cooney JJ (1991) Appl Environ Microbiol 57:2783–2789

    CAS  PubMed  Google Scholar 

  32. Zhai G, Liu J, He B, Zhang J, Zhou Q, Jiang G (2008) Chemosphere 72:389–399

    Article  CAS  PubMed  Google Scholar 

  33. von Ballmoos C, Brunner J, Dimroth P (2004) Proc Natl Acad Sci USA 101:11239–11244. doi:10.1073/pnas.0402869101

    Article  Google Scholar 

  34. Golin J, Ambudkar SV, Gottesman MM, Habib AD, Sczepanski J, Ziccardi W, May L (2003) J Biol Chem 278:5963–5969. doi:10.1074/jbc.M210908200

    Article  CAS  PubMed  Google Scholar 

  35. Golin J, Barkatt A, Cronin S, Eng G, May L (2000) Antimicrob Agents Chemother 44:134–138

    Article  CAS  PubMed  Google Scholar 

  36. Hughes G, Harrison MA, Kim YI, Griffiths DE, Finbow ME, Findlay JB (1996) Biochem J 317(2):425–431

    CAS  PubMed  Google Scholar 

  37. Buck B, Mascioni A, Que L Jr, Veglia G (2003) J Am Chem Soc 125:13316–13317. doi:10.1021/ja0354723

    Article  CAS  PubMed  Google Scholar 

  38. Buck BA, Mascioni A, Cramer CJ, Veglia G (2004) J Am Chem Soc 126:14400–14410. doi:10.1021/ja046093s

    Article  CAS  PubMed  Google Scholar 

  39. Pitts KE, Summers AO (2002) Biochemistry 41:10287–10296

    Article  CAS  PubMed  Google Scholar 

  40. Cardiano P, De Stefano C, Giuffre O, Sammartano S (2008) Biophys Chem 133:19–27. doi:10.1016/j.bpc.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  41. Begley TP, Walts AE, Walsh CT (1986) Biochemistry 25:7192–7200

    Article  CAS  PubMed  Google Scholar 

  42. Walsh CT, Distefano MD, Moore MJ, Shewchuk LM, Verdine GL (1988) FASEB J 2:124–130

    CAS  PubMed  Google Scholar 

  43. Walts AE, Walsh CT (1988) J Am Chem Soc 110:1950–1953

    Article  CAS  Google Scholar 

  44. Thompson TA, Lewis JM, Dejneka NS, Severs WB, Polavarapu R, Billingsley ML (1996) J Pharmacol Exp Ther 276:1201–1216

    CAS  PubMed  Google Scholar 

  45. Figiel I, Fiedorowicz A (2002) Neurotoxicology 23:77–86

    Article  CAS  PubMed  Google Scholar 

  46. Gunasekar P, Li L, Prabhakaran K, Eybl V, Borowitz JL, Isom GE (2001) Toxicol Sci 64:83–89

    CAS  PubMed  Google Scholar 

  47. Buck-Koehntop BA, Mascioni A, Buffy JJ, Veglia G (2005) J Mol Biol 354:652–665. doi:10.1016/j.jmb.2005.09.038

    Article  CAS  PubMed  Google Scholar 

  48. Lackowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York

    Google Scholar 

  49. Cowgill RW (1967) Biochim Biophys Acta 133:6–18

    CAS  PubMed  Google Scholar 

  50. Cowgill RW (1967) Biochim Biophys Acta 140:552–554

    CAS  PubMed  Google Scholar 

  51. Ricci RW, Nesta JM (1976) J Phys Chem 80:974–980

    Article  CAS  Google Scholar 

  52. Chang MC, Petrich JW, McDonald DB, Fleming GR (1983) J Am Chem Soc 105:3819–3824

    Article  CAS  Google Scholar 

  53. Saito I, Sugiyama H, Yamamoto A, Muramatsu S, Matsuura T (1984) J Am Chem Soc 106:4286–4287

    Article  CAS  Google Scholar 

  54. Shizuka H, Serizawa M, Shimo T, Saito I, Matsuura T (1988) J Am Chem Soc 110:1930–1934

    Article  CAS  Google Scholar 

  55. Wada A, Mie M, Aizawa M, Lahoud P, Cass AE, Kobatake E (2003) J Am Chem Soc 125:16228–16234. doi:10.1021/ja036459l

    Article  CAS  PubMed  Google Scholar 

  56. Wahl RC (1994) Anal Biochem 219:383–384. doi:10.1006/abio.1994.1284

    Article  CAS  PubMed  Google Scholar 

  57. Dopp E, Hartmann LM, von Recklinghausen U, Florea AM, Rabieh S, Shokouhi B, Hirner AV, Obe G, Rettenmeier AW (2007) Toxicology 232:226–234. doi:10.1016/j.tox.2007.01.014

    Article  CAS  PubMed  Google Scholar 

  58. Nakatsu Y, Kotake Y, Ohta S (2007) Toxicol Sci 97:438–447. doi:10.1093/toxsci/kfm039

    Article  CAS  PubMed  Google Scholar 

  59. Dong W, Muramoto W, Nagai Y, Takehana K, Stegeman JJ, Teraoka H, Hiraga T (2006) J Vet Med Sci 68:573–579

    Article  CAS  PubMed  Google Scholar 

  60. Ohhira S, Enomoto M, Matsui H (2006) Toxicology 228:171–177. doi:10.1016/j.tox.2006.08.023

    Article  CAS  PubMed  Google Scholar 

  61. Cristofol RM, Gasso S, Vilchez D, Pertusa M, Rodriguez-Farre E, Sanfeliu C (2004) Toxicol Lett 152:35–46. doi:10.1016/j.toxlet.2004.03.023

    Article  CAS  PubMed  Google Scholar 

  62. Seibert H, Morchel S, Gulden M (2004) Cell Biol Toxicol 20:273–283

    Article  CAS  PubMed  Google Scholar 

  63. Costa LG, Guizzetti M, Lu H, Bordi F, Vitalone A, Tita B, Palmery M, Valeri P, Silvestrini B (2001) Toxicology 160:19–26

    Article  CAS  PubMed  Google Scholar 

  64. Stridh H, Cotgreave I, Muller M, Orrenius S, Gigliotti D (2001) Chem Res Toxicol 14:791–798

    Article  CAS  PubMed  Google Scholar 

  65. Stridh H, Orrenius S, Hampton MB (1999) Toxicol Appl Pharmacol 156:141–146. doi:10.1006/taap.1999.8633

    Article  CAS  PubMed  Google Scholar 

  66. Stridh H, Gigliotti D, Orrenius S, Cotgreave I (1999) Biochem Biophys Res Commun 266:460–465. doi:10.1006/bbrc.1999.1821

    Article  CAS  PubMed  Google Scholar 

  67. Billingsley ML, Yun J, Reese BE, Davidson CE, Buck-Koehntop BA, Veglia G (2006) J Cell Biochem 98:243–250. doi:10.1002/jcb.20809

    Article  CAS  PubMed  Google Scholar 

  68. Toggas SM, Krady JK, Billingsley ML (1992) Mol Pharmacol 42:44–56

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made to the donors to the Petroleum Research Fund, administrated by the American Chemical Society, for partial support of this research. B.B. was supported by NIH Chemical Biology Interface Training Grant GM-08700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Veglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porcelli, F., Triggiani, D., Buck-Koehntop, B.A. et al. Pseudoenzymatic dealkylation of alkyltins by biological dithiols. J Biol Inorg Chem 14, 1219–1225 (2009). https://doi.org/10.1007/s00775-009-0565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0565-x

Keywords

Navigation