Skip to main content
Log in

Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window

  • Report
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The multi-heme cytochromes from Shewanella oneidensis associated with the dissimilatory metal reduction (DMR) pathway have been investigated using the technique of protein film voltammetry (PFV). Using PFV, we have interrogated each of the multi-heme cytochromes (MtrA, STC, and solubilized versions of the membrane-bound proteins CymA, OmcA, and MtrC) under identical conditions for the first time. Each cytochrome reveals a broad envelope of voltammetric response, indicative of multiple redox cofactors that span a range of potential of approximately 300 mV. Our studies show that, when considered as an aggregate pathway, the multiple hemes of the DMR cytochromes provide a “window” of operating potential for electron transfer to occur from the cellular interior to the exterior spanning values of −250 to 0 mV (at circumneutral values of pH). Similarly, each cytochrome supports interfacial electron transfer at rates on the order of 200 s−1. These data are taken together to suggest a model of electron transport where a wide window of potential allows for charge transfer from the cellular interior to the exterior to support bioenergetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Shi L, Squier TC, Zachara J, Fredrickson J (2007) Mol Microbiol 65:12–20

    Article  PubMed  CAS  Google Scholar 

  2. DiChristina TJ, Fredrickson J, Zachara J (2005) In: Banfield JF, Cervini-Silva J, Nealson KM (eds) Reviews in mineralogy and geochemistry, vol 59. Mineralogical Society of America, Chantilly, pp 27–52

  3. Richardson DJ (2000) Microbiology 146:551–571

    PubMed  CAS  Google Scholar 

  4. Meyer TE, Tsapin AI, Vandenberghe I, De Smet L, Frishman D, Nealson KH, Cusanovich MA, Van Beeumen JJ (2004) OMICS 8:57–77

    Article  PubMed  CAS  Google Scholar 

  5. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Nat Biotechnol 20:1118–1123

    Article  PubMed  CAS  Google Scholar 

  6. Field SJ, Dobbin PS, Cheesman MR, Watmough NJ, Thomson AJ, Richardson DJ (2000) J Biol Chem 275:8515–8522

    Article  PubMed  CAS  Google Scholar 

  7. Harada E, Kumagai J, Ozawa K, Imabayashi S, Tsapin AS, Nealson KH, Meyer TE, Cusanovich MA, Akutsu H (2002) FEBS Lett 532:333–337

    Article  PubMed  CAS  Google Scholar 

  8. Hartshorne RS, Jepson BN, Clarke TA, Field SJ, Fredrickson J, Zachara J, Shi L, Butt JN, Richardson DJ (2007) J Biol Inorg Chem 12:1083–1094

    Article  PubMed  CAS  Google Scholar 

  9. Pitts KE, Dobbin PS, Reyes-Ramirez F, Thomson AJ, Richardson DJ, Seward HE (2003) J Biol Chem 278:27758–27765

    Article  PubMed  CAS  Google Scholar 

  10. Schwalb C, Chapman SK, Reid GA (2003) Biochemistry 42:9491–9497

    Article  PubMed  CAS  Google Scholar 

  11. Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D (2001) Mol Microbiol 39:722–730

    Article  PubMed  CAS  Google Scholar 

  12. Myers CR, Myers JM (1993) FEMS Microbiol Lett 108:15–22

    Article  CAS  Google Scholar 

  13. Myers CR, Myers JM (1992) J Bacteriol 174:3429–3438

    PubMed  CAS  Google Scholar 

  14. Myers JM, Myers CR (2000) J Bacteriol 182:67–75

    Article  PubMed  CAS  Google Scholar 

  15. Myers CR, Myers JM (1997) J Bacteriol 179:1143–1152

    PubMed  CAS  Google Scholar 

  16. Myers CR, Myers JM (2004) Lett Appl Microbiol 39:466–470

    Article  PubMed  CAS  Google Scholar 

  17. Ross DE, Ruebush SS, Brantley SL, Hartshorne RS, Clarke TA, Richardson DJ, Tien M (2007) Appl Environ Microbiol 73:5797–5808

    Article  PubMed  CAS  Google Scholar 

  18. Myers CR, Myers JM (2003) Lett Appl Microbiol 37:254–258

    Article  PubMed  CAS  Google Scholar 

  19. Shi L, Chen B, Wang Z, Elias DA, Mayer U, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara J, Fredrickson J, Squier TC (2006) J Bacteriol 188:4705–4714

    Article  PubMed  CAS  Google Scholar 

  20. Aguey-Zinsou KF, Bernhardt PV, Leimkuhler S (2003) J Am Chem Soc 125:15352–15358

    Article  PubMed  CAS  Google Scholar 

  21. Heering HA, Weiner JH, Armstrong FA (1997) J Am Chem Soc 119:11628–11638

    Article  CAS  Google Scholar 

  22. Pulcu GS, Elmore BL, Arciero DM, Hooper AB, Elliott SJ (2007) J Am Chem Soc 129:1838

    Article  PubMed  CAS  Google Scholar 

  23. Turner KL, Doherty MK, Heering HA, Armstrong FA, Reid GA, Chapman SK (1999) Biochemistry 38:3302–3309

    Article  PubMed  CAS  Google Scholar 

  24. Almeida MG, Silveira CM, Guigliarelli B, Bertrand P, Moura JJG, Moura I, Léger C (2007) FEBS Lett 581:284–288

    Article  PubMed  CAS  Google Scholar 

  25. Hirst J, Armstrong FA (1998) Anal Chem 70:5062–5071

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Liang Shi (PNNL), Frank Collart and Yuri Londer (Argonne National Laboratories), Stephen Chapman (University of Edinburgh), and Linda Thöny-Meyer (ETH-Zurich) for reagents and strains described in the “Materials and methods” in the electronic supplementary material, and A.K. Jones for thoughtful comments on this manuscript. Financial support was granted by the National Science Foundation (MCB 0546323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean J. Elliott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supporting information (PDF 1137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firer-Sherwood, M., Pulcu, G.S. & Elliott, S.J. Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J Biol Inorg Chem 13, 849–854 (2008). https://doi.org/10.1007/s00775-008-0398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0398-z

Keywords

Navigation