Skip to main content
Log in

The role of axial ligands for the structure and function of chlorophylls

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We have studied the effect of axial ligation of chlorophyll and bacteriochlorophyll using density functional calculations. Eleven different axial ligands have been considered, including models of histidine, aspartate/glutamate, asparagine/glutamine, serine, tyrosine, methionine, water, the protein backbone, and phosphate. The native chlorophylls, as well as their cation and anion radical states and models of the reaction centres P680 and P700, have been studied and we have compared the geometries, binding energies, reduction potentials, and absorption spectra. Our results clearly show that the chlorophylls strongly prefer to be five-coordinate, in accordance with available crystal structures. The axial ligands decrease the reduction potentials, so they cannot explain the high potential of P680. They also redshift the Q band, but not enough to explain the occurrence of red chlorophylls. However, there is some relation between the axial ligands and their location in the various photosynthetic proteins. In particular, the intrinsic reduction potential of the second molecule in the electron transfer path is always lower than that of the third one, a feature that may prevent back-transfer of the electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Backb:

Amino acid backbone

BChl:

Bacteriochlorophyll

BDE:

Bond dissociation energy

BP86:

Becke’s 1988 gradient corrected exchange functional, combined with Perdew’s 1986 correlation functional

Chl:

Chlorophyll

COSMO:

Conductor-like screening model

LHC:

Light-harvesting complex

Pheo:

Pheophytin

Phos:

Phosphate

PSI:

Photosystem I

PSII:

Photosystem II

RC:

Reaction centre

RI:

Resolution-of-the-identity approximation

References

  1. Brettel K (1997) Biochim Biophys Acta 1318:322–373

    Article  CAS  Google Scholar 

  2. Kaim W, Schwederski B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life. Wiley, Chichester, pp 56–78

    Google Scholar 

  3. Nilsson A, Dalibor S, Drakenberg T, Spangfort DM, Forsén S, Allen FJ (1997) J Biol Chem 272:18350–18357

    Article  PubMed  CAS  Google Scholar 

  4. Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  5. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  6. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  7. Brettel K, Leibl W (2001) Biochim Biophys Acta 1507:100–114

    Article  PubMed  CAS  Google Scholar 

  8. Linnanto J, Korppi-Tommola J (2006) Phys Chem Chem Phys 8:663–687

    Article  PubMed  CAS  Google Scholar 

  9. Linnanto J, Korppi-Tommola J (2004) J Phys Chem A 108:5872–5882

    Article  CAS  Google Scholar 

  10. Hasegawa J, Ozeki Y, Ohkawa K, Hada M, Nakatsuji H (1998) J Phys Chem B 102:1320–1326

    Article  CAS  Google Scholar 

  11. Sundholm D (1999) Chem Phys Lett 302:480–484

    Article  CAS  Google Scholar 

  12. Thompson MA, Schenter GK (1995) J Phys Chem 99:6374–6386

    Article  CAS  Google Scholar 

  13. Linnanto J, Korppi-Tommola JEI, Helenius VM (1999) J Phys Chem B 103:8739–8750

    Article  CAS  Google Scholar 

  14. Ihalainen JA, Linnanto J, Myllyperklio P, van Stokkum IHM, Ücker B, Scheer H, Korppi-Tommola JEI (2001) J Phys Chem B 105:9849–9856

    Article  CAS  Google Scholar 

  15. Damjanovic A, Vaswani HM, Fromme P, Fleming GR (2002) J Phys Chem B 106:10251–10262

    Article  CAS  Google Scholar 

  16. Blomberg MRA, Siegbahn PEM, Babcock GT (1998) J Am Chem Soc 120:8812–8824

    Article  CAS  Google Scholar 

  17. Hutter MC, Hughes JM, Reimers JR, Husoh NS (1999) J Phys Chem B 103:4906–4915

    Article  CAS  Google Scholar 

  18. Zhang XD, Ma SH, Wang YN, Zhang XK, Zhang QY (2000) J Photochem Photobiol 131:85–94

    Article  CAS  Google Scholar 

  19. Zhang XD, Zhang CX, Ma SH, Xu H, Shen LL, Li LB, Zhang XK, Kuang TY, Zhang QY (2001) Acta Chim 59:456–465

    CAS  Google Scholar 

  20. Crystal J, Friesner RA (2000) J Phys Chem A 104:2362–2366

    Article  CAS  Google Scholar 

  21. Sinnecker S, Koch W, Lubitz W (2000) PCCP 2:4772:4778

    CAS  Google Scholar 

  22. O’Malley PJ, Cullins SJ (2001) J Am Chem Soc 123:11042–11046

    Article  PubMed  CAS  Google Scholar 

  23. Datta SN, Parandekar PV, Lochan RC (2001) J Phys Chem B 105:1442–1451

    Article  CAS  Google Scholar 

  24. Linnanto J, Korppi-Tommola JEI (2002) Phys Chem Chem Phys 4:3453–3460

    Article  CAS  Google Scholar 

  25. Ivashin N, Larsson S (2002) J Phys Chem B 106:3996–4009

    Article  CAS  Google Scholar 

  26. Sun YM, Wang HZ, Zhao FL, Sun JZ (2004) Chem Phys Lett 387:12–16

    Article  CAS  Google Scholar 

  27. He Z, Sundström V, Pullerits T (2002) J Phys Chem B 106:11606–11612

    Article  CAS  Google Scholar 

  28. Sundholm D (2003) Phys Chem Chem Phys 5:4265–4271

    Article  CAS  Google Scholar 

  29. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Nature 438:1040–1044

    Article  PubMed  CAS  Google Scholar 

  30. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  PubMed  CAS  Google Scholar 

  31. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  32. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley-Interscience, New York

    Google Scholar 

  33. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283–289

    Article  CAS  Google Scholar 

  34. Eichkorn K, Weigend F, Treutler O, Ahlrichs O (1997) Theor Chem Acc 97:119–124

    CAS  Google Scholar 

  35. Hertwig RH, Koch W (1997) Chem Phys Lett 268:345–351

    Article  CAS  Google Scholar 

  36. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  37. Schäfer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) Phys Chem Chem Phys 2:2187–2193

    Article  Google Scholar 

  38. Sharp KA, Honig B (1990) Annu Rev Biophys Biophys Chem 19:301–332

    Article  PubMed  CAS  Google Scholar 

  39. Honig B, Nicholls A (1995) Science 268:1144–1149

    Article  PubMed  CAS  Google Scholar 

  40. Klamt A, Jonas V, Bürger T, Lohrenz JCW (1998) J Phys Chem 102:5074–5085

    CAS  Google Scholar 

  41. Reiss H, Heller A (1985) J Phys Chem 89:4207–4213

    Article  CAS  Google Scholar 

  42. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  43. Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4037

    Article  PubMed  CAS  Google Scholar 

  44. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  45. Seda J, Burda JV, Brázdová V, Kapsa V (2004) Int J Mol Sci 5:196–213

    CAS  Google Scholar 

  46. Dahlbom MG, Reimers JR (2005) Mol Phys 103:1057–1065

    Article  CAS  Google Scholar 

  47. Hersleth H-P, Ryde U, Rydberg P, Görbitz CH, Andersson KK (2006) J Inorg Biochem 100:460–476

    Article  PubMed  CAS  Google Scholar 

  48. Amzel LM (1997) Proteins Struct Funct Gen 28:144–149

    Article  CAS  Google Scholar 

  49. Jensen KP, Ryde U (2003) J Phys Chem B 107:7539–7545

    CAS  Google Scholar 

  50. Jensen KP, Ryde U (2005) J Porphyrins Phthalocyanines 9:581–606

    Article  CAS  Google Scholar 

  51. Shen Y, Ryde U (2004) J Inorg Biochem 98:878–895

    Article  PubMed  CAS  Google Scholar 

  52. Jensen KP, Ryde U (2003) ChemBioChem 4:413–424

    Article  PubMed  CAS  Google Scholar 

  53. Watanabe T, Kobayashi M (1991) In: Scheer H (ed) Chlorophylls. CRC, Boca Raton, p 287

  54. Hasegawa K, Noguchi T (2005) Biochemistry 44:8865–8872

    Article  PubMed  CAS  Google Scholar 

  55. Strain HH, Thomas MR, Katz JJ (1963) Biochim Biophys Acta 75:306–311

    Article  PubMed  CAS  Google Scholar 

  56. Houssier C, Sauer K (1970) J Am Chem Soc 92:779–791

    Article  CAS  Google Scholar 

  57. Hoff AJ, Amesz J (1991) In: Scheer H (ed) Chlorophylls. CRC, Boca Raton, p 723

  58. Gobets B, van Stokkum IHM, Rogner M, Kruip J, Schlodder E, Karapetyan ENV, Dekker JP, van Grondelle R (2001) Biophys J 81:407–424

    Article  PubMed  CAS  Google Scholar 

  59. Zazubovich V, Matsuzaki S, Johnson TW, Hayes JM, Chitnis PR, Small GJ (2002) Chem Phys 275:47–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by grants from the Swedish Research Council and by computer resources of Lunarc at Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Ryde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heimdal, J., Jensen, K.P., Devarajan, A. et al. The role of axial ligands for the structure and function of chlorophylls. J Biol Inorg Chem 12, 49–61 (2007). https://doi.org/10.1007/s00775-006-0164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0164-z

Keywords

Navigation