Skip to main content
Log in

Dinuclear platinum complexes with N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones as linking ligands. Part II. Cellular processing in A2780 cisplatin-resistant human ovarian carcinoma cells: new insights into the mechanism of resistance

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The cellular processing of three fluorescent N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones (aminoalkyl=2-aminoethyl, 3-aminoprop-1-yl or 4-aminobut-1-yl) and their dinuclear platinum complexes in A2780 human ovarian carcinoma cells with acquired resistance to cisplatin has been monitored over time by time-lapse fluorescence microscopy. The results were compared with the previously reported observations in the parent A2780 cell line. The cellular distribution pattern for the free ligands is similar in sensitive and resistant cells, whereas significant differences in cellular distribution were observed in the case of the platinum complexes. In the cisplatin-resistant cell line the platinum complexes were found to be sequestrated in acidic vesicles in the cytosol from the very beginning of the incubation. This sequestration was not observed in the case of sensitive cells. Platinum accumulation in vesicles possibly presents a mechanism of resistance to platinum complexes. This mechanism appears to be unrelated to the mechanism of deactivation of platinum compounds by glutathione. Encapsulation of the dinuclear platinum complexes in lysosomal vesicles provides a plausible explanation for the decreased activity of these compounds in the resistant cell line, as compared to the sensitive cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 A–D
Fig. 5
Fig. 6 A–D
Fig. 7
Fig. 8
Fig. 9 A–D

Similar content being viewed by others

Abbreviations

AQ2:

N,N′-bis(2-aminoethyl)-1,4-diaminoanthracene-9,10-dione

AQ3:

N,N′-bis(3-aminoprop-1-yl)-1,4-diaminoanthracene-9,10-dione

AQ4:

N,N′-bis(4-aminobut-1-yl)-1,4-diaminoanthracene-9,10-dione

l-BSO:

l-buthionine-S,R-sulfoximine

dien:

diethylenetriamine

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide

PAQ2:

[{trans-PtCl(NH3)2}2(μ-AQ2)](NO3)2

PAQ3:

[{trans-PtCl(NH3)2}2(μ-AQ3)](NO3)2

PAQ4:

[{trans-PtCl(NH3)2}2(μ-AQ4)](NO3)2

PAM:

[{Pt(dien)}2(μ-AQ2)](NO3)4

PBS:

phosphate buffered saline

References

  1. Jansen BAJ, Wielaard P, Kalayda GV, Ferrari M, Molenaar C, Tanke HJ, Brouwer J, Reedijk J (2004) J Biol Inorg Chem 9:(accompanying paper)

  2. Perez RP (1998) Eur J Cancer 34:1535–1542

    CAS  PubMed  Google Scholar 

  3. Fuertes MA, Alonso C, Perez JM (2003) Chem Rev 103:645–662

    Article  CAS  PubMed  Google Scholar 

  4. Shen DW, Goldenberg S, Pastan I, Gottesman MM (2000) J Cell Physiol 183:108–116

    Article  CAS  PubMed  Google Scholar 

  5. Godwin AK, Meister A, Odwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) Proc Natl Acad Sci USA 89:3070–3074

    CAS  PubMed  Google Scholar 

  6. Kelley SL, Basu A, Teicher BA, Hacker MP, Hamer DH, Lazo JS (1988) Science 241:1813–1815

    CAS  PubMed  Google Scholar 

  7. Zhen WP, Link CJ, O’Connor PM, Reed E, Parker R, Howell SB, Bohr VA (1992) Mol Cell Biol 12:3689–3698

    CAS  Google Scholar 

  8. Chu G (1994) J Biol Chem 269:787–790

    CAS  PubMed  Google Scholar 

  9. Johnson SW, Shen DW, Pastan I, Gottesman MM, Hamilton TC (1996) Exp Cell Res 226:133–139

    Article  CAS  PubMed  Google Scholar 

  10. Chaney SG, Sancar A (1996) J Natl Cancer Inst 88:1346–1360

    CAS  PubMed  Google Scholar 

  11. Lowe SW, Ruley HE, Jacks T, Housman DE (1993) Cell 74:957–967

    CAS  PubMed  Google Scholar 

  12. Moorehead RA, Singh G (2000) Biochem Pharmacol 59:337–345

    Article  CAS  PubMed  Google Scholar 

  13. Olivero OA, Semino C, Kassim A, Lopezlarraza DM, Poirier MC (1995) Mutat Res Lett 346:221–230

    Article  CAS  Google Scholar 

  14. Molenaar C, Teuben JM, Heetebrij RJ, Tanke HJ, Reedijk J (2000) J Biol Inorg Chem 5:655–665

    Article  CAS  PubMed  Google Scholar 

  15. Watt GW, Cude WA (1968) Inorg Chem 7:335–338

    CAS  Google Scholar 

  16. Racoosin EL, Swanson JA (1993) J Cell Biol 121:1011–1020

    CAS  PubMed  Google Scholar 

  17. Kim JH, Lingwood CA, Williams DB, Furuya W, Manolson MF, Grinstein S (1996) J Cell Biol 134:1387–1399

    CAS  PubMed  Google Scholar 

  18. Kelland LR, Barnard CFJ, Mellish KJ, Jones M, Goddard PM, Valenti M, Bryant A, Murrer BA, Harrap KR (1994) Cancer Res 54:5618–5622

    CAS  PubMed  Google Scholar 

  19. Perez JM, Kelland LR, Montero EI, Boxall FE, Fuertes MA, Alonso C, Navarro-Ranninger C (2003) Mol Pharmacol 63:933–944

    Article  CAS  PubMed  Google Scholar 

  20. Perez JM, Montero EI, Quiroga AG, Fuertes MA, Alonso C, Navarro-Ranninger C (2001) Met-Based Drugs 8:29–37

    Google Scholar 

  21. Mistry P, Kelland LR, Abel G, Sidhar S, Harrap KR (1991) Br J Cancer 64:215–220

    CAS  PubMed  Google Scholar 

  22. Mulder GJ, Ouwerkerk-Mahadevan S (1997) Chem-Biol Interact 105:17–34

    Google Scholar 

  23. Jansen BAJ, Brouwer J, Reedijk J (2002) J Inorg Biochem 89:197–202

    Article  CAS  PubMed  Google Scholar 

  24. Goto S, Yoshida K, Morikawa T, Urata Y, Suzuki K, Kondo T (1995) Cancer Res 55:4297–4301

    CAS  PubMed  Google Scholar 

  25. Timmer-Bosscha H, Mulder NH, de Vries EGE (1992) Br J Cancer 66:227–238

    CAS  PubMed  Google Scholar 

  26. Oehlsen ME, Qu Y, Farrell N (2003) Inorg Chem 42:5498–5506

    Article  CAS  PubMed  Google Scholar 

  27. Aggarwal SK (1993) J Histochem Cytochem 41:1053–1073

    CAS  PubMed  Google Scholar 

  28. Litterst CL (1984) Agents Actions 15:520–524

    CAS  PubMed  Google Scholar 

  29. Bour-Dill C, Gramain MP, Merlin JL, Marchal S, Guillemin F (2000) Cytometry 39:16–25

    Article  CAS  PubMed  Google Scholar 

  30. Edwards PG, Kendall MD, Morris IW (1991) Scanning Microsc 5:797–810

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Johnson Matthey (Reading, UK) for a generous gift of K2PtCl4. Also the support and sponsorship by COST Actions D20/0001/00, D20/0002/00 and D20/003/01 (biocoordination chemistry) is kindly acknowledged. This work has been performed under auspices of the joint BIOMAC Research Graduate School of Leiden University and Delft University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Reedijk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalayda, G.V., Jansen, B.A.J., Molenaar, C. et al. Dinuclear platinum complexes with N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones as linking ligands. Part II. Cellular processing in A2780 cisplatin-resistant human ovarian carcinoma cells: new insights into the mechanism of resistance. J Biol Inorg Chem 9, 414–422 (2004). https://doi.org/10.1007/s00775-004-0540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0540-5

Keywords

Navigation