Skip to main content
Log in

Sclerostin and parathyroid hormone responses to acute whole-body vibration and resistance exercise in young women

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Whole-body vibration (WBV) has been shown to improve bone mineral density, and muscle strength and power. No studies to date have examined sclerostin and parathyroid hormone (PTH) responses to WBV combined with resistance exercise (RE). This randomized crossover study compared acute serum sclerostin and PTH responses to RE and WBV + RE in young women (n = 9) taking oral contraceptives. Participants were exposed to 5 1-min bouts of vibration (20 Hz, 3.38 peak–peak displacement, separated by 1 min of rest) before high intensity resistance exercise. Fasting blood samples were obtained before (PRE), immediately after WBV (POSTWBV), immediately post RE (IP) and 30 min post RE (30P). Pre-exercise sclerostin and PTH levels were not significantly different between conditions. Sclerostin levels significantly (p < 0.05) increased from PRE to IP for the WBV + RE condition, then decreased back to the pre-exercise level. PTH significantly decreased from PRE to 30P (p < 0.05) and IP to 30P (p < 0.01) for both conditions. Correcting for hemoconcentration eliminated the significant sclerostin responses, but the significant decrease in PTH remained (p < 0.05). There were no significant relationships found between sclerostin and PTH. In conclusion, sclerostin concentrations increased in response to the WBV + RE condition, which may have been mediated by plasma volume shifts. There was no transient PTH increase, but it showed a large decrease at 30P for both conditions. Based on these findings, the addition of WBV exposures prior to high intensity RE did not alter sclerostin and PTH responses to RE in young women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Judex S, Rubin CT (2010) Is bone formation induced by high frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact 10:3–11

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rubin C, Turner S, Bain S, Mallinckrodt C, McLeod K (2001) Low mechanical signals strengthen long bones. Nature 412:603–604

    Article  CAS  PubMed  Google Scholar 

  3. Judex S, Lei X, Daniel H, Rubin C (2007) Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 40:1333–1339

    Article  PubMed  Google Scholar 

  4. Gnyubkin V, Guignandon A, Laroche N, Vanden-Bossche A, Malaval L, Vico L (2016) High-acceleration whole-body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice. J Biomech 49:1899–1908

    Article  PubMed  Google Scholar 

  5. Thompson WR, Uzer G, Brobst KE, Xie Z, Sen B, Yen SS, Styner M, Rubin J (2015) Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Sci Rep 5:11049. https://doi.org/10.1038/srep11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oliveira LC, Oliveira RG, Pires-Oliveira DA (2016) Effects of whole-body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis. Osteoporos Int 27:2913–2933

    Article  CAS  PubMed  Google Scholar 

  7. Fratini A, Bonco T, Bull AM (2016) Whole body vibration treatments in postmenopausal women can improve bone mineral density: results of a stimulus focused meta-analysis. PLoS One 11:e0166774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corrie H, Brooke-Wavell K, Mansfield NJ, Cowley A, Morris R, Masud T (2014) Effects of vertical and side-alternating vibration training on fall risk factors and bone turnover in older people at risk of falls. Age Ageing 44:115–122

    Article  PubMed  Google Scholar 

  9. Elmantaser M, McMillan M, Smith K, Khanna S, Chantler D, Panarelli M, Ahmed SF (2012) A comparison of the effect of two types of vibration exercise on the endocrine and musculoskeletal system. J Musculoskelet Neuronal Interact 12:144–154

    CAS  PubMed  Google Scholar 

  10. Osawa Y, Oguma Y, Ishii N (2013) The effects of whole-body vibration on muscle strength and power: a meta-analysis. J Musculoskelet Neuronal Interact 13:380–390

    CAS  PubMed  Google Scholar 

  11. Sherk VD, Chrisman C, Smith J, Young KC, Singh H, Bemben MG, Bemben DA (2013) Acute bone marker responses to whole-body vibration and resistance exercise in young women. J Clin Densitom 16:104–109

    Article  PubMed  Google Scholar 

  12. Bemben DA, Sharma-Ghimire P, Chen Z, Kim E, Kim D, Bemben M (2015) Effects of whole-body vibration on acute bone turnover marker responses to resistance exercise in young men. J Musculoskelet Neuronal Interact 15:23–31

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Delgado-Calle J, Sato AY, Bellido T (2017) Role and mechanism of action of sclerostin in bone. Bone 96:29–37

    Article  CAS  PubMed  Google Scholar 

  14. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    Article  CAS  PubMed  Google Scholar 

  15. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661

    Article  CAS  PubMed  Google Scholar 

  16. Bemben DA, Sherk VD, Ertl WJJ, Bemben MG (2017) Acute bone changes after lower limb amputation from traumatic injury. Osteoporos Int 28:2177–2186

    Article  CAS  PubMed  Google Scholar 

  17. Drake MT, Khosla S (2017) Hormonal and systemic regulation of sclerostin. Bone 96:8–17

    Article  CAS  PubMed  Google Scholar 

  18. Pickering ME, Simon M, Sornay-Rendo E, Chikh K, Carlier MC, Raby AL, Szulc P, Confavreux CB (2017) Serum sclerostin increases after acute physical activity. Calcif Tissue Int 101:170–173

    Article  CAS  PubMed  Google Scholar 

  19. Falk B, Haddad F, Klentrou P, Ward W, Kish K, Mezil Y, Radom-Aizik S (2016) Differential sclerostin and parathyroid hormone response to exercise in boys and men. Osteoporos Int 27:1245–1249

    Article  CAS  PubMed  Google Scholar 

  20. Gombos GC, Bajsz V, Pek E, Schmidt B, Sio E, Molics B, Betlehem J (2016) Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskelet Disord 17:254. https://doi.org/10.1186/s12891-016-1109-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cidem M, Karakoc Y, Ekmekci H, Kucuk SH, Uludag M, Gun K, Karamehmetoglu SS, Karacan I (2014) Effects of whole-body vibration on plasma sclerostin level in healthy women. Turk J Med Sci 44:404–410

    Article  CAS  PubMed  Google Scholar 

  22. Kargotich S, Goodman C, Keast D, Morton AR (1998) The influence of exercise-induced plasma volume changes on the interpretation of biochemical parameters used for monitoring exercise, training and sport. Sports Med 26:101–117

    Article  CAS  PubMed  Google Scholar 

  23. Brahm H, Piehl-Aulin K, Ljunghall S (1997) Bone metabolism during exercise and recovery: the influence of plasma volume and physical fitness. Calcif Tissue Int 61:192–198

    Article  CAS  PubMed  Google Scholar 

  24. Gardinier JD, Mohamed F, Kohn DH (2015) PTH signaling during exercise contributes to bone adaptation. J Bone Miner Res 30:1053–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Silvestrini G, Ballanti P, Leopizzi M, Sebastiani M, Berni S, Di Vito M, Bonucci E (2007) Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone. J Mol Histol 38:261–269

    Article  CAS  PubMed  Google Scholar 

  26. Yu EW, Kumbhani R, Siwila-Sackman E, Leder BZ (2011) Acute decline in serum sclerostin in response to PTH infusion in healthy men. J Clin Endocrinol Metab 96:E1848–E1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scott JPR, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD (2010) The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. J Appl Physiol 110:423–432

    Article  CAS  PubMed  Google Scholar 

  28. Scott JPR, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD (2011) The effect of training status on the metabolic response of bone to an acute bout of exhaustive treadmill running. J Clin Endocrinol Metab 95:3918–3925

    Article  CAS  Google Scholar 

  29. Scott JPR, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD (2014) Treadmill running reduces parathyroid hormone concentrations during recovery compared with a nonexercising control group. J Clin Endocrinol Metab 99:1774–1782

    Article  CAS  PubMed  Google Scholar 

  30. Shea KL, Barry DW, Sherk VD, Hansen KC, Wolfe P, Kohrt WM (2014) Calcium supplementation and parathyroid hormone response to vigorous walking in postmenopausal women. Med Sci Sports Exerc 46:2007–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sherk VD, Wherry SJ, Barry DW, Shea KL, Wolfe P, Kohrt WM (2017) Calcium supplementation attenuates disruptions in calcium homeostasis during exercise. Med Sci Sports Exerc 49:1437–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ashizawa N, Fujimura R, Tokuyama K, Suzuki M (1997) A bout of resistance exercise increases urinary calcium independently of osteoclastic activation in men. J Appl Physiol 83:1159–1163

    Article  CAS  PubMed  Google Scholar 

  33. Rogers RS, Dawson AW, Wang Z, Thyfault JP, Hinton PS (2011) Acute response of plasma markers of bone turnover to a single bout of resistance training or plyometrics. J Appl Physiol 111:1353–1360

    Article  CAS  PubMed  Google Scholar 

  34. Cavalier E, Plebani M, Delanaye P, Souberbielle JC (2015) Considerations in parathyroid hormone testing. Clin Chem Lab Med 53:1913–1919

    Article  CAS  PubMed  Google Scholar 

  35. Gass ML, Kagan R, Kohles JD, Martens MG (2008) Bone turnover marker profile in relation to the menstrual cycle of premenopausal healthy women. Menopause 15:667–675

    Article  PubMed  Google Scholar 

  36. Musgrave KO, Giambalvo L, Leclerc HL, Cook RA (1989) Validation of a quantitative food frequency questionnaire for rapid assessment of dietary calcium intake. J Am Diet Assoc 89:1484–1488

    CAS  PubMed  Google Scholar 

  37. Weeks BK, Beck BR (2008) The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos Int 19:1567–1577

    Article  CAS  PubMed  Google Scholar 

  38. ACSM (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41:687–708

    Article  Google Scholar 

  39. Robling AG, Burr DB, Turner CH (2001) Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 204:3389–3399

    CAS  PubMed  Google Scholar 

  40. Muir J, Kiel DP, Rubin CT (2013) Safety and severity of accelerations delivered from whole body vibration exercise devices to standing adults. J Sci Med Sport 16:526–531

    Article  PubMed  PubMed Central  Google Scholar 

  41. Martin GT (2016) Acute brain trauma. Ann R Coll Surg Engl 98:6–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Beaumont W (1972) Evaluation of hemoconcentration from hematocrit measures. J Appl Physiol 32:712–713

    Article  PubMed  Google Scholar 

  43. Schoesboe JT, Shepherd JA, Bilezikian JP, Baim S (2013) Executive summary of the 2013 International Society for Clinical Densitometry position development conference on bone densitometry. J Clin Densitom 16:455–466

    Article  Google Scholar 

  44. Ardawi MSM, Al-Kadi HA, Rouzi AA, Qari MH (2011) Determinants of serum sclerostin in healthy pre- and postmenopausal women. J Bone Miner Res 26:2812–2822

    Article  CAS  PubMed  Google Scholar 

  45. Galea GL, Lanyon LE, Price JS (2017) Sclerostin’s role in bone’s adaptive response to mechanical loading. Bone 96:38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meakin LB, Galea GL, Sugiyama T, Lanyon LE, Price JS (2014) Age-related impairment of bones’ adaptive response to loading in mice is associated with sex-related deficiencies in osteoblasts but no change in osteocytes. J Bone Miner Res 29:1859–1871

    Article  PubMed  PubMed Central  Google Scholar 

  47. Modder U, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, Melton LJ III, Khosla S (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26:373–379

    Article  CAS  PubMed  Google Scholar 

  48. Durosier C, van Lierop A, Ferrari S, Chevalley T, Papapoulos S, Rizzoli R (2013) Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J Clin Endocrinol Metab 98:3873–3883

    Article  CAS  PubMed  Google Scholar 

  49. Cidem M, Kracan I, Diracoglu D, Yildiz A, Kucuk SH, Uludag M, Gun K, Ozkaya M, Karamehmetoglu SS (2014) A randomized trial on the effect of bone tissue on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. Balkan Med J 31:11–22

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li Z, Tan C, Wu Y, Ding Y, Wang H, Chen W, Zhu Yu, Ma H, Yang H, Liang W, Jiang S, Wang D, Wang L, Tang G, Wang J (2012) Whole-body vibration and resistance exercise prevent long-term hindlimb unloading-induced bone loss: independent and interactive effects. Eur J Appl Physiol 112:3743–3753

    Article  PubMed  Google Scholar 

  51. Joseph F, Chan BY, Durham BH, Ahmad AM, Vinjamuri S, Gallagher JA, Vora JP, Fraser WD (2007) The circadian rhythm of osteoprotegerin and its association with parathyroid hormone secretion. J Clin Endocrinol Metab 92:3230–3238

    Article  CAS  PubMed  Google Scholar 

  52. Redmond J, Fulford AJ, Jarjou L, Zhou B, Prentice A, Shoemakers I (2016) Diurnal rhythms of bone turnover markers in three ethnic groups. J Clin Endocrinol Metab 101:3222–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trivedi H, Szabo A, Zhao S, Cantor T, Raff H (2015) Circadian variation of mineral and bone parameters in end-stage renal disease. J Nephrol 28:351–359

    Article  CAS  PubMed  Google Scholar 

  54. Costa AG, Cremers S, Bilezikian JP (2017) Sclerostin measurement in human disease: validity and current limitations. Bone 96:24–28

    Article  CAS  PubMed  Google Scholar 

  55. Liakou CG, Mastorakos G, Makris K, Fatouros IG, Avloniti A, Marketos H, Antoniuo JD, Galanos A, Dontas I, Rizos D, Tournis S (2016) Changes of serum sclerostin and Dickkopf-1 levels during the menstrual cycle. A pilot study. Endocrine 54:543–551

    Article  CAS  PubMed  Google Scholar 

  56. Cidem M, Usta TA, Karacan I, Kucuk SH, Uludag M, Gun K (2013) Effects of sex steroids on serum sclerostin levels during the menstrual cycle. Gynecol Obstet Investig 75:179–184

    Article  CAS  Google Scholar 

  57. Herrmann M, Seibel MJ (2010) The effects of hormonal contraceptives on bone turnover markers and bone health. Clin Endocrinol 72:571–583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded in part by a University of Oklahoma Research Council Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra Bemben.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma-Ghimire, P., Chen, Z., Sherk, V. et al. Sclerostin and parathyroid hormone responses to acute whole-body vibration and resistance exercise in young women. J Bone Miner Metab 37, 358–367 (2019). https://doi.org/10.1007/s00774-018-0933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-018-0933-0

Keywords

Navigation