Skip to main content
Log in

Functional roles of agmatinase during the peri-implantation period of pregnancy in sheep

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study investigated the effect of agmatine (Agm) in proliferation of ovine trophecdoderm cells (oTr1) as well as the importance of the arginine decarboxylase (ADC) and agmatinase (AGMAT) alternative pathway for synthesis of polyamines in ovine conceptuses during the peri-implantation period of pregnancy. Morpholino antisense oligonucleotides (MAOs) were used to inhibit translation of mRNAs for ODC1 alone, AGMAT alone, and their combination. Rambouillet ewes (N = 50) were assigned randomly to the following treatments on Day 8 of pregnancy: MAO control (n = 10); MAO-ODC1 (n = 8); MAO-ADC (n = 6); MAO-ODC1:MAO-ADC (n = 9); or MAO-ODC1:MAO-AGMAT (n = 9). Ewes were ovario-hysterectomized on Day 16 of pregnancy to obtain uterine flushings, uterine endometrium, and conceptus tissues. Inhibition of translation of both ODC1 and AGMAT resulted in 22% of ewes having morphologically and functionally normal (elongated and healthy) conceptuses designated MAO-ODC1:MAO-AGMAT (A). But, 78% of the MAO-ODC1:MAO-AGMAT ewes had morphologically and functionally abnormal (not elongated and fragmented) conceptuses designated MAO-ODC1:MAO-AGMAT (B). The pregnancy rate was less (22%; P < 0.05) for MAO-ODC1:MAO-AGMAT ewes than for MAO-control (80%), MAO-ODC1 (75%), MAO-ADC (84%), and MAO-ODC1:MAO-ADC (44%) ewes. Moreover, inhibition of translational of both ODC1 and AGMAT mRNAs increased expression of ADC, SLC22A1, SLC22A2, and SLC22A3 mRNAs, as well as abundances of agmatine, putrescine, spermindine, and spermine in conceptus tissue. However, MAO-ODC1:AGMAT(B) ewes had greater abundances of agmatine, putrescine, and spermidine and reduced amounts of spermine in uterine flushes. Thus, in vivo knockdown of translation of ODC1 and AGMAT mRNAs increased expression of genes for the synthesis and transport of polyamines in ovine conceptuses during the peri-implantation period of pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ADC :

Arginine decarboxylase

AGMAT:

Agmatinase

Arg:

l-arginine

Agm:

Agmatine

OAZ:

Antienzyme

MAO:

Morpholino

IFNT:

Interferon tau

IGF2:

Insulin growth factor type 2

NO:

Nitric oxide

ODC1 :

Ornithine decarboxylase

SLC22A1:

Organic cationic transporter type 1

SLC22A2:

Organic cationic transporter type 2

SLC22A3:

Organic cationic transporter type 3

SLC7A1:

Solute carrier family 7 member 1

References

  • Abdulhussein AA, Wallace HM (2014) Polyamines and membrane transporters. Amino acids 46(3):655–660

    Article  CAS  PubMed  Google Scholar 

  • Arqués O, Chicote I, Tenbaum et al (2012) Standardized relative quantification of immunofluorescence tissue staining. Protoc Exch 10. https://doi.org/10.1038/protex.2012.008

  • Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Spencer TE, Ott TL (1997) Interferon tau: a novel pregnancy recognition signal. Am J Reprod Immunol 37:412–420

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA et al (2010a) Uterine receptivity to implantation of blastocysts in mammals. Front Biosci (Schol Ed) 3:745–767

    Google Scholar 

  • Bazer FW, Wu G, Spencer TE et al (2010b) Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod 16:135–152

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Wu G, Johnson GA et al (2011) Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect mechanistic target of rapamycin cell signaling in ewes. Biol Reprod 85:1094–1107

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Kim J, Song G et al (2012) Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development. Ann N Y Acad Sci 1271:88–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Wu G, Johnson GA et al (2014) Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways. Mol Cell Endocrinol 398:53–68

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Wu Z, Wang Jia S, Bazer FW, Wu G (2014) Analysis of polyamines in biological samples by HPLC involving pre-column derivatization with O-phthalaldehyde and N-acetyl-L-cysteine. Amino Acids 46:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • DiFederico E, Genbacev O, Fisher SJ (1999) Preeclampsia is associated with widespread apoptosis of placental cytotrophoblasts within the uterine wall. Am J Pathol 155:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Wu G, Spencer TE et al (2009a) Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Reprod 80:86–93

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE et al (2009b) Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol Reprod 80:602–609

    Article  CAS  PubMed  Google Scholar 

  • Gray CA, Burghardt RC, Johnson GA et al (2002) Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124:289–300

    Article  CAS  PubMed  Google Scholar 

  • Gray CA, Abbey CA, Beremand PD et al (2006) Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus. Biol Reprod 74:383–394

    Article  CAS  PubMed  Google Scholar 

  • Hilal T, Spahn CM (2015) Ribosome rescue and protein quality control in concert. Mol Cell 57:389–390

    Article  CAS  PubMed  Google Scholar 

  • Irwin JC, Suen LF, Martina NA et al (1999) Role of the IGF system in trophoblast invasion and pre-eclampsia. Hum reprod 14(2):90–98

    Article  CAS  PubMed  Google Scholar 

  • Jayme D, Watanabe T, Shimada T (1997) Basal medium development for serum-free culture: a historical perspective. Cytotechnology 23:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Wende AR, Sena S et al (2008) Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol Endocrinol 22:2531–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, Wang X, Yin Y et al (2014) Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. Biol Reprod 91(5):106–111

    Article  PubMed  Google Scholar 

  • Kwon H, Wu G, Bazer FW et al (2003) Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod 69:1626–1634

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre PL, Palin MF, Murphy BD (2011) Polyamines on the reproductive landscape. Endocr Rev 32(5):694–712

    Article  PubMed  Google Scholar 

  • Lenis YY, Wang X, Tang W et al (2016) Effects of agmatine on secretion of interferon tau and catecholamines and expression of genes related to production of polyamines by ovine trophectoderm cells. Amino Acids 48(10):2389–2399

    Article  CAS  PubMed  Google Scholar 

  • LeRoith D, Werner H, Beitner-Johnson D et al (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16(2):143–163

    Article  CAS  PubMed  Google Scholar 

  • Moinard C, Cynober L, de Bandt JP (2005) Polyamines: metabolism and implications in human diseases. Clin Nutr 24(2):184–197

    Article  CAS  PubMed  Google Scholar 

  • Molderings GJ, Haenisch B (2012) Agmatine (decarboxylated l-arginine): physiological role and therapeutic potential. Pharmacol Ther 133:351–365

    Article  CAS  PubMed  Google Scholar 

  • Piletz JE, Aricioglu F, Cheng JT et al (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18(17):880–893

    Article  CAS  PubMed  Google Scholar 

  • Raspotnig G, Fauler G, Jantscher A (1999) Colorimetric determination of cell numbers by janus green staining. Anal Biochem 275(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Rechler MM, Nissley SP (1985) The nature and regulation of the receptors for insulin-like growth factors. Annu Rev Physiol 47(1):425–442

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R, Knabe A, Tekwe D et al (2013) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44(3):911–923

    Article  CAS  PubMed  Google Scholar 

  • Sala-Rabanal M, Li DC, Dake GR et al (2013) Polyamine transport by the polyspecific organic cation transporters OCT1, OCT2, and OCT3. Mol Pharm 10(4):1450–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sastre M, Regunathan S, Galea E et al (1996) Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatine. J Neurochem 67(4):1761–1765

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Hayashi K, Song G et al (2008) Progesterone regulates FGF10, MET, IGFBP1, and IGFBP3 in the endometrium of the ovine uterus. Biol Reprod 79(6):1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Sekowska A, Bertin P, Danchin A (1998) Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Mol Microbiol 29(3):851–858

    Article  CAS  PubMed  Google Scholar 

  • Spencer TE, Bazer FW (2004) Uterine and placental factors regulating conceptus growth in domestic animals. J Anim Sci 82:4–13

    Google Scholar 

  • Spencer TE, Gray A, Johnson GA et al (1999) Effects of recombinant ovine interferon tau, placental lactogen, and growth hormone on the ovine uterus. Biol Reprod 61:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Spencer TE, Johnson GA, Bazer FW et al (2004) Implantation mechanisms: insights from the sheep. Reproduction 128:657–668

    Article  CAS  PubMed  Google Scholar 

  • Spencer TE, Johnson GA, Bazer FW et al (2006) Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod Fertil Dev 19:65–78

    Article  Google Scholar 

  • Spencer TE, Forde N, Lonergan P (2017) Insights into conceptus elongation and establishment of pregnancy in ruminants. Reprod Fertil Dev 29:84–100

    Article  Google Scholar 

  • Wang X, Wei Y, Dunlap KA et al (2014) Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 90:84

    PubMed  Google Scholar 

  • Wang X, Burghardt RC, Romero JJ et al (2015) Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod 92:75

    PubMed  Google Scholar 

  • Wolf C, Brüss M, Hänisch B et al (2007) Molecular basis for the antiproliferative effect of agmatine in tumor cells of colonic, hepatic, and neuronal origin. Mol Pharmacol 71(1):276–283

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629

    CAS  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2004) Maternal nutrition and fetal development. J Nutr 134:2169–2172

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC et al (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

  • Zhao YC, Chi YJ, Yu YS et al (2008) Polyamines are essential in embryo implantation: expression and function of polyamine-related genes in mouse uterus during peri-implantation period. Endocrinology 149(5):2325–2332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from the Sustainability Strategy 2013–2014, from CODI University of Antioquia (UdeA), Medellín, Colombia Scholarship “Becas Doctorado UdeA 2014” was used to support YYL, a PhD student in Veterinary Science, Faculty of Agrarian Science, Antioquia University). Funding for the research and related activities was from the Agriculture and Food Research Initiative Competitive Grants (2016-67015-24958 to FWB and 2015-67015-23276 to GW) from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuller W. Bazer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All experimental and surgical procedures were approved by the Institutional Animal Care and Use Committee at Texas A&M University.

Additional information

Handling Editor: F. Erdmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenis, Y.Y., Elmetwally, M.A., Tang, W. et al. Functional roles of agmatinase during the peri-implantation period of pregnancy in sheep. Amino Acids 50, 293–308 (2018). https://doi.org/10.1007/s00726-017-2515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2515-1

Keywords

Navigation