Skip to main content
Log in

Effects of agmatine on secretion of interferon tau and catecholamines and expression of genes related to production of polyamines by ovine trophectoderm cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Embryonic survival requires histotrophic nutrition, including molecules secreted or transported into the uterine lumen by uterine epithelia. l-Arginine (Arg) is a common substrate for synthesis of nitric oxide, ornithine, proline, glutamate, creatinine, urea, polyamines and agmatine. Agmatine (Agm) is a product of arginine decarboxylation and it is a substrate for agmatinase for synthesis of putrescine and other polyamines in the ovine conceptus. Polyamines are essential for conceptus development. Therefore, this study compared effects of Arg and Agm on the behavior of ovine trophectoderm (oTr1) cells cultured in vitro. Arg, but not Agm, increased proliferation and migration of oTr1 cells, but neither Arg nor Agm affected cell adhesion. The total amount of IFNT in culture medium of oTr1 cells was increased by Arg, but Agm increased the IFNT production per oTr1 cell. Arg and Agm plus Arg decreased secretion of dopamine and norepinephrine by oTr1 cells. Agm upregulates expression of mRNAs SLC7A1, agmatinase and OAZ2 while the combination of Arg and Agm decreased expression of mRNAs for ODC1, SLC7A1, OAZ1 and OAZ3 by oTr1 cells. Although Agm does not stimulate proliferation, migration or adhesion of oTr1 cells or their secretion of catecholamines, Agm did increase transcription of SLC7A1, agmatinase and OAZ2 genes which would increase the capacity of oTr1 cells to produce polyamines. Collectively, our findings suggest a role for Arg and Agm in the regulation of transport of basic amino acids (including Arg), polyamine synthesis, and secretion of catecholamines by oTr1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

AGMAT:

Agmatinase

Arg:

l-Arginine

Agm:

Agmatine

OAZ:

Antienzyme

CM:

Complete medium

FBS:

Fetal bovine serum

IFNT:

Interferon tau

NO:

Nitric oxide

ODC1:

Ornithine decarboxylase

oTr1:

Ovine trophectoderm primary cell line

References

  • Bazer FW, Spencer TE, Ott TL (1997) Interferon tau: a novel pregnancy recognition signal. Am J Reprod Immunol 37:412–420

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA et al (2009) Comparative aspects of implantation. Reproduction 138:195–209

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA et al (2010a) Uterine receptivity to implantation of blastocysts in mammals. Front Biosci (Schol Ed) 3:745–767

    Google Scholar 

  • Bazer FW, Wu G, Spencer TE et al (2010b) Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod 16:135–152

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Song G, Kim J et al (2012) Mechanistic mammalian target of rapamycin (MTOR) cell signaling: effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol 354:22–33

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Johnson GA, Wu G (2015a) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Article  PubMed  Google Scholar 

  • Bazer FW, Ying W, Wang XQ et al (2015b) The many faces of interferon tau. Amino Acids 47:449–460

    Article  CAS  PubMed  Google Scholar 

  • Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  • Dudkowska M, Lai J, Gardini G et al (2003) Agmatine modulates the in vivo biosynthesis and interconversion of polyamines and cell proliferation. Biochim Biophys Acta 1619:159–166

    Article  CAS  PubMed  Google Scholar 

  • Farmer JL, Burghardt RC, Jousan FD et al (2008) Galectin 15 (LGALS15) functions in trophectoderm migration and attachment. FASEB J 22:548–560

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE et al (2009a) Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine luminal flushings of cyclic and pregnant ewes. Biol Reprod 80:86–93

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE et al (2009b) Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol Reprod 80:602–609

    Article  CAS  PubMed  Google Scholar 

  • Gardini G, Cravanzola C, Autelli R et al (2003) Agmatine inhibits the proliferation of rat hepatoma cells by modulation of polyamine metabolism. J Hepatol 39:793–799

    Article  CAS  PubMed  Google Scholar 

  • Gründemann D, Hahne C, Berkels R et al (2003) Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2). J Pharmacol Exp Ther 304:810–817

    Article  PubMed  Google Scholar 

  • Isome M, Lortie MJ, Murakami Y et al (2007) The antiproliferative effects of agmatine correlate with the rate of cellular proliferation. Am J Physiol Cell Physiol 293:705–711

    Article  Google Scholar 

  • Kim J, Song G, Gao H et al (2008) Insulin-like growth factor II activates phosphatidylinositol 3-kinase-protooncogenic protein kinase 1 and mitogen-activated protein kinase cell signaling pathways, and stimulates migration of ovine trophectoderm cells. Endocrinology 149:3085–3094

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Burghardt RC, Wu G et al (2011a) Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod 84:62–69

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Burghardt RC, Wu G et al (2011b) Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod 84:62–69

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW et al (2003a) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Wu G, Bazer FW et al (2003b) Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod 69:1626–1634

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Mohammed KA, Goldberg EP et al (2013) Arginine-conjugated albumin microspheres inhibits proliferation and migration in lung cancer cells. Am J Cancer Res 3:266–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Regunathan S, Barrow CJ et al (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969

    Article  CAS  PubMed  Google Scholar 

  • Li G, Regunathan S, Reis DJ (1995) Agmatine is synthesized by a mitochondrial arginine decarboxylase in rat brain. Ann N Y Acad Sci 763:325–329

    Article  CAS  PubMed  Google Scholar 

  • López C, Ramos MB, Cremades A et al (2010) Antizyme inhibitor 2: molecular, cellular and physiological aspects. Amino Acids 38:603–611

    Article  Google Scholar 

  • Mangold U (2005) The antizyme family: polyamines and beyond. IUBMB Life 57:671–676

    Article  CAS  PubMed  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    CAS  PubMed  Google Scholar 

  • Mistry SK, Burwell TJ, Chambers RM et al (2002) Cloning of human agmatinase. An alternate path for polyamine synthesis induced in liver by hepatitis B virus. Am J Physiol Gastrointest Liver Physiol 282:375–381

    Article  Google Scholar 

  • Molderings G, Bönisch H, Göthert M et al (2001) Agmatine and putrescine uptake in the human glioma cell line SK-MG-1. Naunyn Schmiedebergs Arch Pharmacol 363:671–679

    Article  CAS  PubMed  Google Scholar 

  • Palomba L, Persichini T, Mazzone V et al (2004) Inhibition of nitric-oxide synthase-I (NOS-I)-dependent nitric oxide production by lipopolysaccharide plus interferon-γ is mediated by arachidonic acid. Effects on NFΚB activation and late inducible NOS expression. J Biol Chem 279:29895–29901

    Article  CAS  PubMed  Google Scholar 

  • Piletz JE, Aricioglu F, Cheng JT et al (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18:880–893

    Article  CAS  PubMed  Google Scholar 

  • Raspotnig G, Fauler G, Jantscher A et al (1999) Colorimetric determination of cell numbers by Janus green staining. Anal Biochem 275:74–83

    Article  CAS  PubMed  Google Scholar 

  • Regunathan S, Piletz J (2003) Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci 1009:20–29

    Article  CAS  PubMed  Google Scholar 

  • Reis DJ, Regunathan S (1999) Agmatine: an endogenous ligand at imidazoline receptors is a novel neurotransmitter. Ann N Y Acad Sci 881:65–80

    Article  CAS  PubMed  Google Scholar 

  • Renzo GC, Clerici G, Neri I et al (2005) Potential effects of nutrients on placental function and fetal growth. Nestle Nutr Workshop Ser Pediatr Program 55:73–78

    Article  PubMed  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD et al (2013) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    Article  CAS  PubMed  Google Scholar 

  • Sala RM, Li DC, Dake GR et al (2013) Polyamine transport by the polyspecific organic cation transporters OCT1, OCT2, and OCT3. Mol Pharmacol 10:1450–1458

    Article  Google Scholar 

  • Satriano J, Matsufuji S, Murakami Y et al (1998) Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem 273:15313–15316

    Article  CAS  PubMed  Google Scholar 

  • Satriano J, Isome M, Casero RA (2001) Polyamine transport system mediates agmatine transport in mammalian cells. Am J Physiol Cell Physiol 281:329–334

    Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Ann Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  • Tapella L, Stravalaci M, Bastone A et al (2013) Epitope scanning indicates structural differences in brain-derived monomeric and aggregated mutant prion proteins related to genetic prion diseases. Biochem J 454:417–425

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Hammer RE, Matsumoto AM et al (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toninello A, Battaglia V, Salvi M et al (2006) Structural characterization of agmatine at physiological conditions. Struct Chem 17:163–175

    Article  CAS  Google Scholar 

  • Wang JF, Su RB, Wu N et al (2005) Inhibitory effect of agmatine on proliferation of tumor cells by modulation of polyamine metabolism. Acta Pharmacol Sin 26:616–622

    CAS  PubMed  Google Scholar 

  • Wang X, Wei Y, Dunlap KA et al (2014) Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 90:84

    Article  PubMed  Google Scholar 

  • Wang X, Burghardt RC, Romero JJ et al (2015) Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod 92:75

    Article  PubMed  Google Scholar 

  • Wolf C, Bruess M, Haenisch B et al (2007) Molecular basis for the antiproliferative effect of agmatine in tumor cells of colonic, hepatic, and neuronal origin. Mol Pharmacol 71:276–283

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:395–402

    Google Scholar 

  • Wu N, Xu B, Liu Y et al (2005) Inhibitory effect of agmatine on proliferation of tumor cells by modulation of polyamine metabolism. Acta Pharmacol Sin 26:616–622

    PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC et al (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

  • Xiao XM, Li LP (2005) l-Arginine treatment for asymmetric fetal growth restriction. Int J Gynaecol Obstet 88:15–18

    Article  CAS  PubMed  Google Scholar 

  • Young KH, Bazer FW, Simpkins JW et al (1987) Effects of early pregnancy and acute 17β-estradiol administration on porcine uterine secretion, cyclic nucleotides, and catecholamines. Endocrinology 120:254–263

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Wang F, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Sustainability Strategy 2013–2014, from CODI University of Antioquia (UdeA), Medellín, Colombia Scholarship “Becas Doctorado UdeA 2014” (to YYL; PhD student in Veterinary Science, Faculty of Agrarian Science, Antioquia University) and by Agriculture and Food Research Initiative Competitive Grants (2011-67015-20028 and 2015-67015-23276) from the USDA National Institute of Food and Agriculture (to FWB and GW). Yasser Lenis is also a Research Fellow in the Department of Animal Science, Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuller W. Bazer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This study involved an established cell line and did not require the use of animals.

Additional information

Handling Editor: E. Agostinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenis, Y.Y., Wang, X., Tang, W. et al. Effects of agmatine on secretion of interferon tau and catecholamines and expression of genes related to production of polyamines by ovine trophectoderm cells. Amino Acids 48, 2389–2399 (2016). https://doi.org/10.1007/s00726-016-2216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2216-1

Keywords

Navigation