Skip to main content
Log in

Analysis of polyamines in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-l-cysteine

  • Amino Acids Protocols
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines (putrescine, spermine and spermidine) play a crucial role in the regulation of cell growth, differentiation, death and function. Accurate measurement of these substances is essential for studying their metabolism in cells. This protocol describes detailed procedures for sample preparation and HPLC analysis of polyamines and related molecules (e.g., agmatine and cadaverine) in biological samples. The method is optimized for the deproteinization of samples, including biological fluids (e.g., 10 μl), plant and animal tissues (e.g., 50 mg), and isolated/cultured cells (e.g., 1 × 106 cells). The in-line reaction of polyamines with o-phthalaldehyde and N-acetyl-l-cysteine yields fluorescent derivatives which are separated on a reversed-phase C18 column and detected by a fluorometer at an excitation wavelength of 340 nm and an emission wavelength of 450 nm. The total running time for each sample (including column regeneration on the automated system) is 30 min. The detection limit is 0.5 nmol/ml or 0.1 nmol/mg tissue in biological samples. The assays are linear between 1 and 50 μM for each of the polyamines. The accuracy (the nearness of an experimental value to the true value) and precision (agreement between replicate measurement) of the HPLC method are 2.5–4.2 % and 0.5–1.4 %, respectively, for biological samples, depending on polyamine concentrations and sample type. Our HPLC method is highly sensitive, specific, accurate, easily automated, and capable for the analysis of samples with different characteristics and small volume/amount, and provides a useful research tool for studying the biochemistry, physiology, and pharmacology of polyamines and related substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HPLC:

High-performance liquid chromatography

NAC:

N-Acetyl-l-cysteine

OPA:

o-Phthaldialdehyde

PBS:

Phosphate-buffered saline

SDS:

Sodium dodecyl sulphate

References

  • Acheampong P, Macleod MJ, Wallace HM (2011) Procedures to evaluate the importance of dietary polyamines. Methods Mol Biol 720:349–364

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli E (2012) Role of polyamines, their analogs and transglutaminases in biological and clinical perspectives. Amino Acids 42:397–409

    Article  CAS  PubMed  Google Scholar 

  • Campíns-Falcó P, Molins-Legua C, Sevillano-Cabeza A et al (2001) o-Phthalaldelhyde-N-acetylcysteine polyamine derivatives: formation and stability in solution and in C18 supports. J Chromatogr B 759:285–297

    Article  Google Scholar 

  • Cerrada-Gimenez M, Hakkinen MR, Vepsalainen J et al (2012) Polyamine flux analysis by determination of heavy isotope incorporation from C-13, N-15-enriched amino acids into polyamines by LC–MS/MS. Amino Acids 42:451–460

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Russell JB, Sniffen CJ (1987) A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J Dairy Sci 70:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Wickersham TA, Wu G et al (2014) Abomasal infusion of arginine stimulates SCD and C/EBPß gene expression, and decreases CPT1ß gene expression in bovine adipose tissue independent of conjugated linoleic acid. Amino Acids 46:353–366

    Article  CAS  PubMed  Google Scholar 

  • Codoñer-Franch P, Tavárez-Alonso S, Murria-Estal R et al (2011) Polyamines are increased in obese children and are related to markers of oxidative/nitrosative stress and angiogenesis. J Clin Endocrinol Metab 96:2821–2825

    Article  PubMed  Google Scholar 

  • Correa-Fiz F, Reyes-Palomares A, Fajardo I et al (2012) Regulatory cross-talk of mouse liver polyamine and methionine metabolic pathways: a systemic approach to its physiopathological consequences. Amino Acids 42:577–595

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2013) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512

    Article  CAS  PubMed  Google Scholar 

  • Do THT, Gaboriau F, Morel I et al (2013) Modulation of ethanol effect on hepatocyte proliferation by polyamines. Amino Acids 44:869–877

    Article  CAS  PubMed  Google Scholar 

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamana K, Matsuzaki S (1992) Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Buga GM, Wei HL et al (2001) Role of the arginine–nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 98:4202–4208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isobe K, Yamada H, Soejima Y, Otsuji S (1987) A rapid enzymatic assay for total blood polyamines. Clin Biochem 20:157–161

    Article  CAS  PubMed  Google Scholar 

  • Jung YS, Kim SJ, Kwon DY et al (2012) Metabolomic analysis of sulfur-containing substances and polyamines in regenerating rat liver. Amino Acids 42:2095–2102

    Article  CAS  PubMed  Google Scholar 

  • Koponen T, Cerrada-Gimenez M, Pirinen E et al (2012) The activation of hepatic and muscle polyamine catabolism improves glucose homeostasis. Amino Acids 42:427–440

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Feng DY, Zhang YL et al (2013) Hormonal regulation of leucine catabolism in mammary epithelial cells. Amino Acids 45:531–541

    Article  CAS  PubMed  Google Scholar 

  • Levillain O, Ramos-Molina B, Forcheron F et al (2012) Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys. Amino Acids 43:2153–2163

    Article  CAS  PubMed  Google Scholar 

  • Li H, Meininger CJ, Hawker JR Jr et al (2001) Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol Endocrinol Metab 280:E75–E82

    CAS  PubMed  Google Scholar 

  • Liu R, Bi K, Jia Y et al (2012) Determination of polyamines in human plasma by high-performance liquid chromatography coupled with Q-TOF mass spectrometry. J Mass Spectrom 47:1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Marton LJ, Lee PL (1975) More sensitive automated detection of polyamines in physiological fluids and tissue extracts with o-phthalaldehyde. Clin Chem 21:1721–1724

    CAS  PubMed  Google Scholar 

  • Marton LJ, Heby O, Wilson CB, Lee PL (1974) An automated micromethod for the quantitative analysis of di- and polyamines utilizing a sensitive high pressure liquid chromatographic procedure. FEBS Lett 41:99–103

    Article  CAS  PubMed  Google Scholar 

  • Masukawa Y, Matsui Y, Shimizu N et al (2006) Determination of green tea catechins in human plasma using liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 834:26–34

    Article  CAS  Google Scholar 

  • Pegg AE, Casero RA Jr (2011) Current status of the polyamine research field. Methods Mol Biol 720:3–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD et al (2013) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-López J, Camañes G, Flors V et al (2009) Underivatized polyamine analysis in plant samples by ion pair LC coupled with electrospray tandem mass spectrometry. Plant Physiol Biochem 47:592–598

    Article  PubMed  Google Scholar 

  • Sase A, Dahanayaka S, Höger H et al (2013) Changes of hippocampal β-alanine and citrulline levels parallel early and late phase of retrieval in the Morris Water Maze. Behav Brain Res 249:104–108

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Schenkel E, Berlaimont V, Dubois J et al (1995) Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B 668:189–197

    Article  CAS  Google Scholar 

  • Seiler N (1971) Identification and quantitation of amines by thin-layer chromatography. J Chromatogr 63:97–112

    Article  CAS  PubMed  Google Scholar 

  • Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9:623–642

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Cona A, Federico R et al (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42:411–426

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei LH, Wu G, Morris SM Jr et al (2001) Elevated arginase I expression in rat aortic smooth muscle cells increases cell proliferation. Proc Natl Acad Sci USA 98:9260–9264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2013) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424

    CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 269:R621–R629

    Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Thompson JR (1987) Ketone bodies inhibit leucine degradation in chick skeletal muscle. Int J Biochem 19:937–943

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Thompson JR (1988) The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick. Biochem J 255:139–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000a) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:E395–E402

    CAS  PubMed  Google Scholar 

  • Wu G, Flynn NE, Knabe DA et al (2000b) A cortisol surge mediates the enhanced polyamine synthesis in porcine enterocytes during weaning. Am J Physiol Regul Integr Physiol 279:R554–R559

    CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work in our laboratories was supported by the China Postdoctoral Science Foundation (2012T50163), National Natural Science Foundation of China (u0731001, 30810103902, 31172217, 31272449, and 31272450), Chinese Universities Scientific Funds (2012RC024), the Thousand-People Talent program at China Agricultural University, National Research Initiative Competitive Grants from the Animal Reproduction Program (2008-35203-19120 and 2011-67015-20028) and Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, and Texas AgriLife Research Hatch project (H-8200). We are grateful to Gang Lin, Bin Wang, and Ji Yun for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Z., Wu, Z., Wang, J. et al. Analysis of polyamines in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. Amino Acids 46, 1557–1564 (2014). https://doi.org/10.1007/s00726-014-1717-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1717-z

Keywords

Navigation