Skip to main content
Log in

Membrane phosphoinositides and protein–membrane interactions

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Proteins with polybasic clusters bind to negatively charged phosphoinositides at the cell membrane. In this review, I have briefly discussed the types of phosphoinositides naturally found on membrane surfaces and how they recruit protein complexes for carrying out the process of signal transduction. A large number of researchers from around the world are now focusing their attention on protein–membrane binding, as these interactions have started to offer us a much better insight into the process of cell signaling. The main areas discussed in this brief review article include the phosphoinositide binding specificities of proteins and the role of their lipid binding in signaling processes downstream of membrane recruitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe N, Inoue T, Galvez T, Klein L, Meyer T (2008) Dissecting the role of PtdIns(4,5)P2 in endocytosis and recycling of the transferrin receptor. J Cell Sci 121:1488–1494

    Article  PubMed  CAS  Google Scholar 

  • Arendt KL, Royo M, Fernández-Monreal M, Knafo S, Petrok CN, Martens JR, Esteban JA (2010) PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci 13:36–44

    Article  PubMed  CAS  Google Scholar 

  • Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC (1989) PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57:167–175

    Article  PubMed  CAS  Google Scholar 

  • Blind RD, Suzawa M, Ingraham HA (2012) Direct modification and activation of a nuclear receptor-PIP2 complex by the inositol lipid kinase IPMK. Sci Signal 5:ra44

    Article  PubMed  Google Scholar 

  • Chen CL, Wang Y, Sesaki H, Iijima M (2012) Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci Signal 5:ra10

    Article  PubMed  Google Scholar 

  • Cho W (2006) Building signaling complexes at the membrane. Sci STKE 321:pe7

    Google Scholar 

  • Cho W, Stahelin RV (2005) Membrane–protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151

    Article  PubMed  CAS  Google Scholar 

  • Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72

    Article  PubMed  CAS  Google Scholar 

  • Chuang JZ, Zhao Y, Sung CH (2007) SARA-regulated vesicular targeting underlies formation of the light-sensing organelle in mammalian rods. Cell 130:535–547

    Article  PubMed  CAS  Google Scholar 

  • Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW, Krystal G (1996) The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc Natl Acad Sci USA 93:1689–1693

    Article  PubMed  CAS  Google Scholar 

  • Devereaux K, Di Paolo G (2013) PI5P migrates out of the PIP shadow. EMBO Rep 14:214–215

    Article  PubMed  CAS  Google Scholar 

  • Divecha N, Banfic H, Irvine RF (1991) The polyphosphoinositide cycle exists in the 523 nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and 524 stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of 525 protein kinase C to the nucleus. EMBO J 10:3207–3214

    PubMed  CAS  Google Scholar 

  • Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ, Michell RH (1997) Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390:187–192

    Article  PubMed  CAS  Google Scholar 

  • Gokhale NA, Abraham A, Digman MA, Gratton E, Cho W (2005) Phosphoinositide specificity of and mechanism of lipid domain formation by annexin A2–p11 heterotetramer. J Biol Chem 280:42831–42840

    Article  PubMed  CAS  Google Scholar 

  • Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF (2012) PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337:727–730

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa A, Leonard D, Murphy S, Hayes S, Soto M, Fogarty K, Standley C, Bellve K, Lambright D, Mello C, Corvera S (2006) The WD40 and FYVE domain containing protein 2 defines a class of early endosomes necessary for endocytosis. Proc Natl Acad Sci 103:11928–11933

    Article  PubMed  CAS  Google Scholar 

  • Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  PubMed  CAS  Google Scholar 

  • Ho CY, Alghamdi TA, Botelho RJ (2012) Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP2. Traffic 13:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hogan A, Yakubchyk Y, Chabot J, Obagi C, Daher E, Maekawa K, Gee SH (2004) The phosphoinositol 3,4-bisphosphate-binding protein TAPP1 interacts with syntrophins and regulates actin cytoskeletal organization. J Biol Chem 279:53717–53724

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci 104:9301–9306

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RH, Kirk CJ, Jones LM, Downes CP, Creba JA (1981) The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Phil Trans R Soc B 296:123–137

    Article  Google Scholar 

  • Moravcevic K, Oxley CL, Lemmon MA (2012) Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20:15–27

    Article  PubMed  CAS  Google Scholar 

  • Oppelt A, Lobert VH, Haglund K, Mackey AM, Rameh LE, Liestøl K, Schink KO, Pedersen NM, Wenzel EM, Haugsten EM, Brech A, Rusten TE, Stenmark H, Wesche J (2013) Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Rep 14:57–64

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez L, Simeonato E, Scimemi P, Anselmi F, Calì B, Crispino G, Ciubotaru CD, Bortolozzi M, Ramirez FG, Majumder P, Arslan E, De Camilli P, Pozzan T, Mammano F (2012) Reduced phosphatidylinositol 4,5-bisphosphate synthesis impairs inner ear Ca2+ signaling and high-frequency hearing acquisition. Proc Natl Acad Sci USA 109:14013–14018

    Article  PubMed  CAS  Google Scholar 

  • Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, Chida S, Tsuya Y, Takasuga S, Eguchi S, Asanuma K, Horie Y, Miura K, Davies EM, Mitchell C, Yamazaki M, Hirai H, Takenawa T, Suzuki A, Sasaki T (2010) The PtdIns(3,4)P(2) phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature 465:497–501

    Article  PubMed  CAS  Google Scholar 

  • Shears SB (2007) Understanding the biological significance of diphosphoinositol polyphosphates (‘inositol pyrophosphates’). Biochem Soc Symp 74:211–221

    Article  PubMed  CAS  Google Scholar 

  • Stenmark H, Aasland R, Driscoll PC (2002) The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett 513:77–84

    Article  PubMed  CAS  Google Scholar 

  • Stocker H, Andjelkovic M, Oldham S, Laffargue M, Wymann MP, Hemmings BA, Hafen E (2002) Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in Akt/PKB. Science 295:2088–2091

    Article  PubMed  CAS  Google Scholar 

  • Sudhahar CG, Haney RM, Xue Y, Stahelin RV (2008) Cellular membranes and lipid-binding domains as attractive targets for drug development. Curr Drug Targets 9:603–613

    Article  PubMed  CAS  Google Scholar 

  • Vajanaphanich M, Schultz C, Rudolf MT, Wasserman M, Enyedi P, Craxton A, Shears SB, Tsien RY, Barrett KE, Traynor-Kaplan A (1994) Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature 371:711–714

    Article  PubMed  CAS  Google Scholar 

  • Varnai P, Balla T (2008) Live cell imaging of phosphoinositides with expressed inositide binding protein domains. Methods 46:167–176

    Article  PubMed  CAS  Google Scholar 

  • Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315:239–242

    Article  PubMed  CAS  Google Scholar 

  • Yildirim S, Castano E, Sobol M, Philimonenko VV, Dzijak R, Venit T, Hozák P (2013) Involvement of PIP2 in RNA polymerase I transcription. J Cell Sci (EPub ahead of print)

Download references

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil A. Gokhale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhale, N.A. Membrane phosphoinositides and protein–membrane interactions. Amino Acids 45, 751–754 (2013). https://doi.org/10.1007/s00726-013-1512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1512-2

Keywords

Navigation