Skip to main content
Log in

d-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

d-Aspartate (d-Asp) is an endogenous amino acid in the central nervous and reproductive systems of vertebrates and invertebrates. High concentrations of d-Asp are found in distinct anatomical locations, suggesting that it has specific physiological roles in animals. Many of the characteristics of d-Asp have been documented, including its tissue and cellular distribution, formation and degradation, as well as the responses elicited by d-Asp application. d-Asp performs important roles related to nervous system development and hormone regulation; in addition, it appears to act as a cell-to-cell signaling molecule. Recent studies have shown that d-Asp fulfills many, if not all, of the definitions of a classical neurotransmitter—that the molecule’s biosynthesis, degradation, uptake, and release take place within the presynaptic neuron, and that it triggers a response in the postsynaptic neuron after its release. Accumulating evidence suggests that these criteria are met by a heterogeneous distribution of enzymes for d-Asp’s biosynthesis and degradation, an appropriate uptake mechanism, localization within synaptic vesicles, and a postsynaptic response via an ionotropic receptor. Although d-Asp receptors remain to be characterized, the postsynaptic response of d-Asp has been studied and several l-glutamate receptors are known to respond to d-Asp. In this review, we discuss the current status of research on d-Asp in neuronal and neuroendocrine systems, and highlight results that support d-Asp’s role as a signaling molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe K, Takahashi S, Muroki Y, Kera Y, Yamada RH (2006) Cloning and expression of the pyridoxal 5′-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme. J Biochem 139(2):235–244. doi:10.1093/jb/mvj028

    CAS  PubMed  Google Scholar 

  • Adachi M, Koyama H, Long ZQ, Sekine M, Furuchi T, Imai K, Nimura N, Shimamoto K, Nakajima T, Homma H (2004) l-Glutamate in the extracellular space regulates endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 424(1):89–96. doi:10.1016/j.abb.2004.01.016

    CAS  PubMed  Google Scholar 

  • Assisi L, Botte V, D’Aniello A, Di Fiore MM (2001) Enhancement of aromatase activity by d-aspartic acid in the ovary of the lizard Podarcis s. sicula. Reproduction 121(5):803–808. doi:10.1530/rep.0.1210803

    CAS  PubMed  Google Scholar 

  • Bharathi, Jagannath Rao KS, Stein R (2003) First evidence on induced topological changes in supercoiled DNA by an aluminium d-aspartate complex. J Biol Inorg Chem 8(8):823–830. doi:10.1007/s00775-003-0484-1

    CAS  PubMed  Google Scholar 

  • Brown ER, Piscopo S, Chun JT, Francone M, Mirabile I, D’Aniello A (2007) Modulation of an AMPA-like glutamate receptor (SqGluR) gating by l- and d-aspartic acids. Amino Acids 32(1):53–57. doi:10.1007/s00726-006-0349-3

    CAS  PubMed  Google Scholar 

  • Carlson SL, Fieber LA (2011) Physiological evidence that d-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica neurons. J Neurophysiol 106(4):1629–1636. doi:10.1152/jn.00403.2011

    CAS  PubMed  Google Scholar 

  • Cousin MA, Hurst H, Nicholls DG (1997) Presynaptic calcium channels and field-evoked transmitter exocytosis from cultured cerebellar granule cells. Neuroscience 81(1):151–161. doi:10.1016/S0306-4522(97)00047-X

    CAS  PubMed  Google Scholar 

  • D’Aniello A, Giuditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris Lam. J Neurochem 29(6):1053–1057. doi:10.1111/j.1471-4159.1977.tb06508.x

    PubMed  Google Scholar 

  • D’Aniello A, Giuditta A (1978) Presence of d-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J Neurochem 31(4):1107–1108. doi:10.1111/j.1471-4159.1978.tb00155.x

    PubMed  Google Scholar 

  • D’Aniello A, Nardi G, Vetere A, Ferguson GP (1993a) Occurrence of free d-aspartic acid in the circumsoesophageal ganglia of Aplysia fasciata. Life Sci 52(8):733–736. doi:10.1016/0024-3205(93)90235-u

    PubMed  Google Scholar 

  • D’Aniello A, Vetere A, Petrucelli L (1993b) Further study on the specificity of d-amino acid oxidase and d-aspartate oxidase and time course for complete oxidation of d-amino acid. Comp Biochem Physiol B Biochem Mol Biol 105(3–4):731–734. doi:10.1016/0305-0491(93)90113-J

    Google Scholar 

  • D’Aniello A, Dicosmo A, Dicristo C, Fisher G (1995a) d-Aspartate in the male and female reproductive system of Octopus vulgaris lam. Gen Comp Endocrinol 100(1):69–72. doi:10.1006/gcen.1995.1134

    PubMed  Google Scholar 

  • D’Aniello A, Nardi G, DeSantis A, Vetere A, di Cosmo A, Marchelli R, Dossena A, Fisher G (1995b) Free l-amino acids and d-aspartate content in the nervous system of Cephalopoda. A comparative study. Comp Biochem Physiol B Biochem Mol Biol 112(4):661–666. doi:10.1016/0305-0491(95)00227-8

    Google Scholar 

  • D’Aniello A, DiCosmo A, DiCristo C, Annunziato L, Petrucelli L, Fisher G (1996) Involvement of d-Aspartic acid in the synthesis of testosterone in rat testes. Life Sci 59(2):97–104. doi:10.1016/0024-3205(96)00266-4

    PubMed  Google Scholar 

  • D’Aniello A, Di Fiore MM, Fisher GH, Milone A, Seleni A, D’Aniello S, Perna AF, Ingrosso D (2000a) Occurrence of d-aspartic acid and N-methyl-d-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB J 14(5):699–714

    PubMed  Google Scholar 

  • D’Aniello A, Spinelli P, De Simone A, D’Aniello S, Branno M, Aniello F, Fisher GH, Di Fiore MM, Rastogi RK (2003) Occurrence and neuroendocrine role of d-aspartic acid and N-methyl-d-aspartic acid in Ciona intestinalis. FEBS Lett 552(2–3):193–198. doi:10.1016/s0014-5793(03)00921-9

    PubMed  Google Scholar 

  • D’Aniello S, Spinelli P, Ferrandino G, Peterson K, Tsesarskia M, Fisher G, D’Aniello A (2005a) Cephalopod vision involves dicarboxylic amino acids: d-aspartate, l-aspartate and l-glutamate. Biochem J 386:331–340. doi:10.1042/bj20041070

    PubMed  Google Scholar 

  • D’Aniello G, Grieco N, Di Filippo MA, Cappiello F, Topo E, D’Aniello E, Ronsini S (2007a) Reproductive implication of d-aspartic acid in human pre-ovulatory follicular fluid. Hum Reprod 22(12):3178–3183. doi:10.1093/humrep/dem328

    PubMed  Google Scholar 

  • D’Aniello S, Fisher GH, Topo E, Ferrandino G, Garcia-Fernandez J, D’Aniello A (2007b) N-methyl-d-aspartic acid (NMDA) in the nervous system of the amphioxus Branchiostoma lanceolatum. BMC Neurosci 8:109. doi:10910.1186/1471-2202-8-109

    PubMed  Google Scholar 

  • D’Aniello A (2007) d-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53(2):215–234. doi:10.1016/j.brainresrev.2006.08.005

    PubMed  Google Scholar 

  • D’Aniello S, Garcia-Fernandez J (2007) d-Aspartic acid and l-amino acids in the neural system of the amphioxus Branchiostoma lanceolatum. Amino Acids 32(1):21–26. doi:10.1007/s00726-006-0347-5

    PubMed  Google Scholar 

  • D’Aniello A, Donofrio G, Pischetola M, Daniello G, Vetere A, Petrucelli L, Fisher GH (1993c) Biological role of d-amino acid oxidase and d-aspartate oxidase. Effects of d-amino acids. J Biol Chem 268(36):26941–26949

    PubMed  Google Scholar 

  • D’Aniello A, Lee JM, Petrucelli L, Di Fiore MM (1998) Regional decreases of free d-aspartate levels in Alzheimer’s disease. Neuroscience Lett 250(2):131–134. doi:10.1016/s0304-3940(98)00451-0

    Google Scholar 

  • D’Aniello G, Tolino A, D’Aniello A, Errico F, Fisher GH, Di Fiore MM (2000b) The role of d-aspartic acid and N-methyl-d-aspartic acid in the regulation of prolactin release. Endocrinology 141(10):3862–3870. doi:10.1210/en.141.10.3862

    PubMed  Google Scholar 

  • D’Aniello G, Ronsini S, Guida F, Spinelli P, D’Aniello A (2005b) Occurrence of d-aspartic acid in human seminal plasma and spermatozoa: possible role in reproduction. Fertil Steril 84(5):1444–1449. doi:10.1016/j.fertnstert.2005.05.019

    PubMed  Google Scholar 

  • D’Aniello S, Somorjai I, Garcia-Fernandez J, Topo E, D’Aniello A (2011) d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25(3):1014–1027. doi:10.1096/fj.10-168492

    PubMed  Google Scholar 

  • Davies LP, Johnston GAR (1976) Uptake and release of d-aspartate and l-aspartate by rat brain slices. J Neurochem 26(5):1007–1014. doi:10.1111/j.1471-4159.1976.tb06485.x

    CAS  PubMed  Google Scholar 

  • Di Fiore MM, Assisi L, Botte V, D’Aniello A (1998) d-Aspartic acid is implicated in the control of testosterone production by the vertebrate gonad. Studies on the female green frog, Rana esculenta. J Endocrinol 157(2):199–207. doi:10.1677/joe.0.1570199

    PubMed  Google Scholar 

  • Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141(1):27–32. doi:10.1016/s0006-291x(86)80329-1

    CAS  PubMed  Google Scholar 

  • Errico F, Nistico R, Palma G, Federici M, Affuso A, Brilli E, Topo E, Centonze D, Bernardi G, Bozzi Y, D’Aniello A, Di Lauro R, Mercuri NB, Usiello A (2008a) Increased levels of d-aspartate in the hippocampus enhance LTP but do not facilitate cognitive flexibility. Mol Cell Neurosci 37(2):236–246. doi:10.1016/j.mcn.2007.09.012

    CAS  PubMed  Google Scholar 

  • Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G, D’Aniello A, Centonze D, Usiello A (2008b) d-Aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28(41):10404–10414. doi:10.1523/jneurosci.1618-08.2008

    CAS  PubMed  Google Scholar 

  • Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, Napolitano F, Marinucci S, Di Luca M, Calabresi P, Fisone G, Carta M, Picconi B, Gardoni F, Usiello A (2011a) Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Exp Neurol 232(2):240–250. doi:10.1016/j.expneurol.2011.09.013

    CAS  PubMed  Google Scholar 

  • Errico F, Nistico R, Napolitano F, Mazzola C, Astone D, Pisapia T, Giustizieri M, D’Aniello A, Mercuri NB, Usiello A (2011b) Increased d-aspartate brain content rescues hippocampal age-related synaptic plasticity deterioration of mice. Neurobiol Aging 32(12):2229–2243. doi:10.1016/j.neurobiolaging.2010.01.002

    CAS  PubMed  Google Scholar 

  • Fagg GE, Matus A (1984) Selective association of N-methyl aspartate and quisqualate types of l-glutamate receptor with brain postsynaptic densities. Proc Nat Acad Sci USA Biol Sci 81(21):6876–6880. doi:10.1073/pnas.81.21.6876

    CAS  Google Scholar 

  • Fieber LA, Carlson SL, Capo TR, Schmale MC (2010) Changes in d-aspartate ion currents in the Aplysia nervous system with aging. Brain Res 1343:28–36. doi:10.1016/j.brainres.2010.05.001

    CAS  PubMed  Google Scholar 

  • Fisher GH, Daniello A, Vetere A, Padula L, Cusano GP, Man EH (1991) Free d-aspartate and d-alanine in normal and Alzheimer brain. Brain Res Bull 26(6):983–985. doi:10.1016/0361-9230(91)90266-m

    CAS  PubMed  Google Scholar 

  • Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM, Sweedler JV, Pollegioni L, Millan MJ, Oliet SHR, Mothet JP (2012) Glial d-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22(3):595–606. doi:10.1093/cercor/bhr130

    PubMed  Google Scholar 

  • Fuchs SA, Berger R, Klomp LWJ, de Koning TJ (2005) d-Amino acids in the central nervous system in health and disease. Mol Genet Metab 85(3):168–180. doi:10.1016/j.ymgme.2005.03.003

    CAS  PubMed  Google Scholar 

  • Fujii N (2002) d-Amino acids in living higher organisms. Origins Life Evol Biosphere 32(2):103–127. doi:10.1023/A:1016031014871

    CAS  Google Scholar 

  • Funakoshi M, Sekine M, Katane M, Furuchi T, Yohda M, Yoshikawa T, Homma H (2008) Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase—d-aspartate behavior during germination. FEBS J 275(6):1188–1200. doi:10.1111/j.1742-4658.2008.06279.x

    CAS  PubMed  Google Scholar 

  • Gadea A, Lopez E, Lopez-Colome AM (2004) Glutamate-induced inhibition of d-aspartate uptake in Muller glia from the retina. Neurochem Res 29(1):295–304. doi:10.1023/B:NERE.0000010458.45085.e8

    CAS  PubMed  Google Scholar 

  • Gosling JP, Fottrell PF (1978) Purification and characterization of d-amino acid aminotransferase from Rhizobium japonicum. Biochim Biophys Acta Enzymol 522:84–95. doi:10.1016/0005-2744(78)90324-8

    CAS  Google Scholar 

  • Hamase K, Homma H, Takigawa Y, Imai K (1999) Alteration in the d-amino acid content of the rat pineal gland under anesthesia. Amino Acids 17(3):277–283. doi:10.1007/bf01366926

    CAS  PubMed  Google Scholar 

  • Hamase K, Morikawa A, Zaitsu K (2002) d-Amino acids in mammals and their diagnostic value. J Chromatogr B Analyt Technol Biomed Life Sci 781(1–2):73–91. doi:10.1016/S1570-0232(02)00690-6

    CAS  PubMed  Google Scholar 

  • Han H, Miyoshi Y, Ueno K, Okamura C, Tojo Y, Mita M, Lindner W, Zaitsu K, Hamase K (2011) Simultaneous determination of d-aspartic acid and d-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure. J Chromatogr B Analyt Technol Biomed Life Sci 879:3196–3202. doi:10.1016/j.jchromb.2011.01.023

    CAS  PubMed  Google Scholar 

  • Hashimoto A, Kumashiro S, Nishikawa T, Oka T, Takahashi K, Mito T, Takashima S, Doi N, Mizutani Y, Yamazaki T, Kaneko T, Ootomo E (1993) Embryonic development and postnatal changes in free d-aspartate and d-serine in the human prefrontal cortex. J Neurochem 61(1):348–351. doi:10.1111/j.1471-4159.1993.tb03575.x

    CAS  PubMed  Google Scholar 

  • Hodges MR, Richerson GB (2008) Contributions of 5-HT neurons to respiratory control: neuromodulatory and trophic effects. Respir Physiol Neuro 164(1–2):222–232. doi:10.1016/j.resp.2008.05.014

    CAS  Google Scholar 

  • Homma H (2007) Biochemistry of d-aspartate in mammalian cells. Amino Acids 32(1):3–11. doi:10.1007/s00726-006-0354-6

    CAS  PubMed  Google Scholar 

  • Huang AS, Beigneux A, Weil ZM, Kim PM, Molliver ME, Blackshaw S, Nelson RJ, Young SG, Snyder SH (2006) d-Aspartate regulates melanocortin formation and function: behavioral alterations in d-aspartate oxidase-deficient mice. J Neurosci 26(10):2814–2819. doi:10.1523/jneurosci.5060-05.2006

    CAS  PubMed  Google Scholar 

  • Imai K, Fukushima T, Hagiwara K, Santa T (1995) Occurrence of d-aspartic acid in rat brain pineal gland of d-aspartic acid in rat-brain pineal-gland. Biomed Chromatogr 9(2):106–109. doi:10.1002/bmc.1130090211

    CAS  PubMed  Google Scholar 

  • Imai K, Fukushima T, Santa T, Homma H, Sugihara J, Kodama H, Yoshikawa M (1997) Accumulation of radioactivity in rat brain and peripheral tissues including salivary gland after intravenous administration of C-14-d-aspartic acid. P Jpn Acad B-Phys 73(3):48–52. doi:10.2183/pjab.73.48

    Google Scholar 

  • Junjaud G, Rouaud E, Turpin F, Mothet JP, Billard JM (2006) Age-related effects of the neuromodulator d-serine on neurotransmission and synaptic potentiation in the CA1 hippocampal area of the rat. J Neurochem 98(4):1159–1166. doi:10.1111/j.1471-4159.2006.03944.x

    CAS  PubMed  Google Scholar 

  • Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360(6403):467–471. doi:10.1038/360467a0

    CAS  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Katane M, Homma H (2011) d-Aspartate-An important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3108–3121. doi:10.1016/j.jchromb.2011.03.062

    CAS  PubMed  Google Scholar 

  • Katane M, Furuchi T, Sekine M, Homma H (2007a) Molecular cloning of a cDNA encoding mouse d-aspartate oxidase and functional characterization of its recombinant proteins by site-directed mutagenesis. Amino Acids 32(1):69–78. doi:10.1007/s00726-006-0350-x

    CAS  PubMed  Google Scholar 

  • Katane M, Seida Y, Sekine M, Furuchi T, Homma H (2007b) Caenorhabditis elegans has two genes encoding functional d-aspartate oxidases. FEBS J 274(1):137–149. doi:10.1111/j.1742-4658.2006.05571.x

    CAS  PubMed  Google Scholar 

  • Katane M, Saitoh Y, Seida Y, Sekine M, Furuchi T, Homma H (2010) Comparative characterization of three d-aspartate oxidases and one d-amino acid oxidase from Caenorhabditis elegans. Chem Biodivers 7(6):1424–1434. doi:10.1002/cbdv.200900294

    CAS  PubMed  Google Scholar 

  • Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song HJ, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA 107(7):3175–3179. doi:10.1073/pnas.0914706107

    CAS  PubMed  Google Scholar 

  • Kimmich GA, Roussie J, Manglapus M, Randles J (2001) Characterization of Na+-coupled glutamate/aspartate transport by a rat brain astrocyte line expressing GLAST and EAAC1. J Membr Biol 182(1):17–30. doi:10.1007/s00232-001-0025-1

    CAS  PubMed  Google Scholar 

  • Kochhar S, Christen P (1992) Mechanism of racemization of amino acids by aspartate aminotransferase. Eur J Biochem 203(3):563–569. doi:10.1111/j.1432-1033.1992.tb16584.x

    CAS  PubMed  Google Scholar 

  • Koyama H, Sekine M, Furuchi T, Katane M, Nimura N, Shimamoto K, Nakajima T, Homma H (2005) A novel l-glutamate transporter inhibitor reveals endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Life Sci 76(25):2933–2944. doi:10.1016/j.lfs.2004.10.057

    CAS  PubMed  Google Scholar 

  • Koyama H, Adachi M, Sekine M, Katane M, Furuchi T, Homma H (2006) Cytoplasmic localization and efflux of endogenous d-aspartate in pheochromocytoma 12 cells. Arch Biochem Biophys 446(2):131–139. doi:10.1016/j.abb.2005.12.008

    CAS  PubMed  Google Scholar 

  • Kuwahara O, Mitsumoto Y, Chiba K, Mohri T (1992) Characterization of d-aspartic acid uptake by rat hippocampal slices and effect of ischemic conditions. J Neurochem 59(2):616–621. doi:10.1111/j.1471-4159.1992.tb09414.x

    CAS  PubMed  Google Scholar 

  • Lamont HC, Staudenbauer WL, Strominger JL (1972) Partial purification and characterization of an aspartate racemase from Streptococcus faecalis. J Biol Chem 247:5103–5106

    CAS  PubMed  Google Scholar 

  • Lapainis T, Sweedler JV (2008) Contributions of capillary electrophoresis to neuroscience. J Chromatogr A 1184(1–2):144–158. doi:10.1016/j.chroma.2007.10.098

    CAS  PubMed  Google Scholar 

  • Lapainis T, Rubakhin SS, Sweedler JV (2009) Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal Chem 81(14):5858–5864. doi:10.1021/ac900936g

    CAS  PubMed  Google Scholar 

  • Lau CL, Beart PM, O’Shea RD (2010) Transportable and non-transportable inhibitors of l-glutamate uptake produce astrocytic stellation and increase EAAT2 cell surface expression. Neurochem Res 35(5):735–742. doi:10.1007/s11064-010-0130-6

    CAS  PubMed  Google Scholar 

  • Lee JA, Homma H, Sakai K, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Yoshikawa M, Imai K (1997) Immunohistochemical localization of d-aspartate in the rat pineal gland. Biochem Biophys Res Commun 231(2):505–508. doi:10.1006/bbrc.1996.5902

    CAS  PubMed  Google Scholar 

  • Lee JA, Homma H, Tashiro K, Iwatsubo T, Imai K (1999) d-Aspartate localization in the rat pituitary gland and retina. Brain Res 838(1–2):193–199. doi:10.1016/s0006-8993(99)01718-7

    CAS  PubMed  Google Scholar 

  • Liu YM, Schneider M, Sticha CM, Toyooka T, Sweedler JV (1998) Separation of amino acid and peptide stereoisomers by nonionic micelle-mediated capillary electrophoresis after chiral derivatization. J Chromatogr 800(2):345–354. doi:10.1016/s0021-9673(97)01137-0

    CAS  Google Scholar 

  • Long ZQ, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Yamada RH, Imai K (1998) Biosynthesis of d-aspartate in mammalian cells. FEBS Lett 434(3):231–235. doi:10.1016/s0014-5793(98)00986-7

    CAS  PubMed  Google Scholar 

  • Long Z, Lee JA, Okamoto T, Nimura N, Imai K, Homma H (2000) d-Aspartate in a prolactin-secreting clonal strain of rat pituitary tumor cells (GH(3)). Biochem Biophys Res Commun 276(3):1143–1147. doi:10.1006/bbrc.2000.3573

    CAS  PubMed  Google Scholar 

  • Long ZQ, Sekine M, Adachi M, Furuchi T, Imai K, Nimura N, Homma H (2002) Cell density inversely regulates d- and l-aspartate levels in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 404(1):92–97. doi:10.1016/s0003-9861(02)00241-2

    CAS  PubMed  Google Scholar 

  • Malthesorenssen D, Skrede KK, Fonnum F (1979) Calcium-dependent release of d-[3H] aspartate evoked by selective electrical stimulation of excitatory afferent fibres to hippocampal pyramidal cells in vitro. Neuroscience 4(9):1255–1263. doi:10.1016/0306-4522(79)90155-6

    CAS  Google Scholar 

  • Masuda W, Nouso C, Kitamura C, Terashita M, Noguchi T (2003) Free d-aspartic acid in rat salivary glands. Arch Biochem Biophys 420(1):46–54. doi:10.1016/j.abb.2003.09.032

    CAS  PubMed  Google Scholar 

  • Miao H, Rubakhin SS, Sweedler JV (2005) Subcellular analysis of d-Aspartate. Anal Chem 77(22):7190–7194. doi:10.1021/ac0511694

    CAS  PubMed  Google Scholar 

  • Miao H, Rubakhin SS, Scanlan CR, Wang LP, Sweedler JV (2006a) d-Aspartate as a putative cell-cell signaling molecule in the Aplysia californica central nervous system. J Neurochem 97(2):595–606. doi:10.1111/j.1471-4159.2006.03891.x

    CAS  PubMed  Google Scholar 

  • Miao H, Rubakhin SS, Sweedler JV (2006b) Confirmation of peak assignments in capillary electrophoresis using immunoprecipitation. Application to d-aspartate measurements in neurons. J Chromatogr A 1106(1–2):56–60. doi:10.1016/j.chroma.2005.09.037

    CAS  PubMed  Google Scholar 

  • Morikawa A, Hamase K, Inoue T, Konno R, Zaitsu K (2007) Alterations in d-amino acid levels in the brains of mice and rats after the administration of d-amino acids. Amino Acids 32(1):13–20. doi:10.1007/s00726-005-0357-8

    CAS  PubMed  Google Scholar 

  • Muzzolini A, Bregola G, Bianchi C, Beani L, Simonato M (1997) Characterization of glutamate and [H-3] d-aspartate outflow from various in vitro preparations of the rat hippocampus. Neurochem Int 31(1):113–124. doi:10.1016/S0197-0186(96)00129-5

    CAS  PubMed  Google Scholar 

  • Nagasaki H (1994) Gender-related differences of mouse liver d-aspartate oxidase in the activity and response to administration of d-aspartate and peroxisome proliferators. Int J Biochem 26(3):415–423. doi:10.1016/0020-711X(94)90062-0

    CAS  PubMed  Google Scholar 

  • Nagata Y, Homma H, Lee JA, Imai K (1999a) d-Aspartate stimulation of testosterone synthesis in rat Leydig cells. FEBS Lett 444(2–3):160–164. doi:10.1016/s0014-5793(99)00045-9

    CAS  PubMed  Google Scholar 

  • Nagata Y, Homma H, Matsumoto M, Imai K (1999b) Stimulation of steroidogenic acute regulatory protein (StAR) gene expression by d-aspartate in rat Leydig cells. FEBS Lett 454(3):317–320. doi:10.1016/s0014-5793(99)00840-6

    CAS  PubMed  Google Scholar 

  • Nakatsuka S, Hayashi M, Muroyama A, Otsuka M, Kozaki S, Yamada H, Moriyama Y (2001) d-Aspartate is stored in secretory granules and released through a Ca2+-dependent pathway in a subset of rat pheochromocytoma PC12 cells. J Biol Chem 276(28):26589–26596. doi:10.1074/jbc.M011754200

    CAS  PubMed  Google Scholar 

  • Negri A, Ceciliani F, Tedeschi G, Simonic T, Ronchi S (1992) The primary structure of the flavoprotein d-aspartate oxidase from beef kidney. J Biol Chem 267(17):11865–11871

    CAS  PubMed  Google Scholar 

  • Neidle A, Dunlop DS (1990) Developmental changes in free d-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci 46(21):1517–1522. doi:10.1016/0024-3205(90)90424-p

    CAS  PubMed  Google Scholar 

  • Ogawa T, Fukuda M, Sasaoka K (1973) Occurrence of d-amino acid aminotransferase in pea seedlings. Biochem Biophys Res Commun 52:998–1002. doi:10.1016/0006-291x(73)91036-x

    CAS  PubMed  Google Scholar 

  • Okuma E, Abe H (1994) Simultaneous determination of d- and l-amino acids in the nervous tissues of crustaceans using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 660(2):243–250. doi:10.1016/0378-4347(94)00304-1

    CAS  Google Scholar 

  • Page JS, Rubakhin SS, Sweedler JV (2002) Single-neuron analysis using CE combined with MALDI MS and radionuclide detection. Anal Chem 74(3):497–503

    CAS  PubMed  Google Scholar 

  • Palmer AM, Reiter CT (1994) Comparison of the superfused efflux of preaccumulated d-[3H] aspartate and endogenous l-aspartate and l-glutamate from rat cerebrocortical minislices. Neurochem Int 25(5):441–450. doi:10.1016/0197-0186(94)90020-5

    CAS  PubMed  Google Scholar 

  • Pampillo M, Scimonelli T, Bottino MC, Duvilanski BH, Rettori V, Seilicovich A, Lasaga M (2002) The effect of d-aspartate on luteinizing hormone-releasing hormone, alpha-melanocyte-stimulating hormone GABA and dopamine release. Neuroreport 13(17):2341–2344. doi:10.1097/01.wnr.0000044986.13025.9d

    CAS  PubMed  Google Scholar 

  • Ramachandran B, Houben K, Rozenberg YY, Haigh JR, Varpetian A, Howard BD (1993) Differential expression of transporters for norepinephrine and glutamate in wild type, variant, and WNT1-expressing PC12 cells. J Biol Chem 268(32):23891–23897

    CAS  PubMed  Google Scholar 

  • Raucci F, Di Fiore MM (2010) The maturation of oocyte follicular epithelium of Podarcis s. sicula is promoted by d-aspartic acid. J Histochem Cytochem 58(2):157–171. doi:10.1369/jhc.2009.954636

    CAS  PubMed  Google Scholar 

  • Raucci F, Di Fiore MM (2011) d-Asp: a new player in reproductive endocrinology of the amphibian Rana esculenta. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3268–3276. doi:10.1016/j.jchromb.2011.04.007

    CAS  PubMed  Google Scholar 

  • Raucci F, Santillo A, D’Aniello A, Baccari GC (2005) d-Aspartate modulates transcriptional activity in Harderian gland of frog, Rana esculenta: morphological and molecular evidence. J Cell Physiol 204(2):445–454. doi:10.1002/jcp.20316

    CAS  PubMed  Google Scholar 

  • Rubakhin SS, Romanova EV, Nemes P, Sweedler JV (2011) Profiling metabolites and peptides in single cells. Nat Methods 8(4 Suppl):S20–S29. doi:10.1038/nmeth.1549

    CAS  PubMed  Google Scholar 

  • Sakai K, Homma H, Lee JA, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1998) Emergence of d-aspartic acid in the differentiating neurons of the rat central nervous system. Brain Res 808(1):65–71. doi:10.1016/s0006-8993(98)00599-x

    CAS  PubMed  Google Scholar 

  • Sato M, Inoue F, Kanno N, Sato Y (1987) The occurrence of N-methyl-d-aspartic acid in muscle extracts of the blood shell Scapharca broughtonii. Biochem J 241(1):309–311

    CAS  PubMed  Google Scholar 

  • Savage DD, Galindo R, Queen SA, Paxton LL, Allan AM (2001) Characterization of electrically evoked H-3-d-aspartate release from hippocampal slices. Neurochem Int 38(3):255–267. doi:10.1016/s0197-0186(00)00077-2

    CAS  PubMed  Google Scholar 

  • Scanlan C, Shi T, Hatcher NG, Rubakhin SS, Sweedler JV (2010) Synthesis, accumulation, and release of d-aspartate in the Aplysia californica CNS. J Neurochem 115(5):1234–1244. doi:10.1111/j.1471-4159.2010.07020.x

    CAS  PubMed  Google Scholar 

  • Schell MJ, Cooper OB, Snyder SH (1997) d-Aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci USA 94(5):2013–2018. doi:10.1073/pnas.94.5.2013

    CAS  PubMed  Google Scholar 

  • Setoyama C, Miura R (1997) Structural and functional characterization of the human brain d-aspartate oxidase. J Biochem 121(4):798–803

    CAS  PubMed  Google Scholar 

  • Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Kera Y, Yamada RH (2003) Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comp Biochem Physiol B Biochem Mol Biol 134(2):307–314. doi:10.1016/s1096-4959(02)00267-1

    PubMed  Google Scholar 

  • Shibata K, Sugaya N, Ono W, Abe K, Takahashi S, Kera Y (2011) Determination of d-aspartate N-methyltransferase activity in the starfish by direct analysis of N-methyl-d-aspartate with high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sciw 879(29):3229–3234. doi:10.1016/j.jchromb.2011.02.035

    CAS  Google Scholar 

  • Simonic T, Duga S, Negri A, Tedeschi G, Malcovati M, Tenchini ML, Ronchi S (1997) cDNA cloning and expression of the flavoprotein d-aspartate oxidase from bovine kidney cortex. Biochem J 322:729–735

    CAS  PubMed  Google Scholar 

  • Spinelli P, Brown ER, Ferrandino G, Branno M, Montarolo PG, D’Aniello E, Rastogi RK, D’Aniello B, Baccari GC, Fisher G, D’Aniello A (2006) d-aspartic acid in the nervous system of Aplysia limacina: possible role in neurotransmission. J Cell Physiol 206(3):672–681. doi:10.1002/jcp.20513

    CAS  PubMed  Google Scholar 

  • Takahashi S, Takahashi T, Kera Y, Matsunaga R, Shibuya H, Yamada RH (2004) Cloning and expression in Escherichia coli of the d-aspartate oxidase gene from the yeast Cryptococcus humicola and characterization of the recombinant enzyme. J Biochem 135(4):533–540. doi:10.1093/jb/mvh068

    CAS  PubMed  Google Scholar 

  • Takigawa Y, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Imai K (1998) d-Aspartate uptake into cultured rat pinealocytes and the concomitant effect on l-aspartate levels and melatonin secretion. Biochem Biophys Res Commun 248(3):641–647. doi:10.1006/bbrc.1998.8971

    CAS  PubMed  Google Scholar 

  • Todoroki N, Shibata K, Yamada T, Kera Y, Yamada RH (1999) Determination of N-methyl-d-aspartate in tissues of bivalves by high-performance liquid chromatography. J Chromatogr B 728(1):41–47. doi:10.1016/s0378-4347(99)00089-4

    CAS  Google Scholar 

  • Topo E, Soricelli A, D’Aniello A, Ronsini S, D’Aniello G (2009) The role and molecular mechanism of d-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod Biol Endocrinol 7:120. doi:10.1186/1477-7827-7-120

    PubMed  Google Scholar 

  • Topo E, Soricelli A, Di Maio A, D’Aniello E, Di Fiore MM, D’Aniello A (2010) Evidence for the involvement of d-aspartic acid in learning and memory of rat. Amino Acids 38(5):1561–1569. doi:10.1007/s00726-009-0369-x

    CAS  PubMed  Google Scholar 

  • Vacca RA, Christen P, Malashkevich VN, Jansonius JN, Sandmeier E (1995) Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity. Eur J Biochem 227(1–2):481–487. doi:10.1111/j.1432-1033.1995.tb20413.x

    CAS  PubMed  Google Scholar 

  • Vacca RA, Giannattasio S, Graber R, Sandmeier E, Marra E, Christen P (1997) Active-site Arg > Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. J Biol Chem 272(35):21932–21937. doi:10.1074/jbc.272.35.21932

    CAS  PubMed  Google Scholar 

  • Vanveldhoven PP, Brees C, Mannaerts GP (1991) d-Aspartate oxidase, a peroxisomal enzyme in liver of rat and man. Biochim Biophys Acta 1073(1):203–208. doi:10.1016/0304-4165(91)90203-s

    CAS  Google Scholar 

  • Verdoorn TA, Dingledine R (1988) Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology. Mol Pharmacol 34:298–307

    CAS  PubMed  Google Scholar 

  • Wang H, Wolosker H, Pevsner J, Snyder SH, Selkoe DJ (2000) Regulation of rat magnocellular neurosecretory system by d-aspartate: evidence for biological role(s) of a naturally occurring free d-amino acid in mammals. J Endocrinol 167(2):247–252. doi:10.1677/joe.0.1670247

    CAS  PubMed  Google Scholar 

  • Wang H, Wolosker H, Morris JF, Pevsner J, Snyder SH, Selkoe DJ (2002) Naturally occurring free d-aspartate is a nuclear component of cells in the mammalian hypothalamo-neurohypophyseal system. Neuroscience 109(1):1–4. doi:10.1016/S0306-4522(01)00545-0

    CAS  PubMed  Google Scholar 

  • Wang LP, Ota N, Romanova EV, Sweedler JV (2011) A novel pyridoxal 5′-phosphate-dependent amino acid racemase in the Aplysia californica central nervous system. J Biol Chem 286(15):13765–13774. doi:10.1074/jbc.M110.178228

    CAS  PubMed  Google Scholar 

  • Watkins JC, Jane DE (2006) The glutamate story. Br J Pharmacol 147:S100–S108. doi:10.1038/sj.bjp.0706444

    CAS  PubMed  Google Scholar 

  • Weil ZM, Huang AS, Beigneux A, Kim PM, Molliver ME, Blackshaw S, Young SG, Nelson RJ, Snyder SH (2006) Behavioural alterations in male mice lacking the gene for d-aspartate oxidase. Behav Brain Res 171(2):295–302. doi:10.1016/j.bbr.2006.04.008

    CAS  PubMed  Google Scholar 

  • Wolosker H, D’Aniello A, Snyder SH (2000) d-Aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100(1):183–189. doi:10.1016/s0306-4522(00)00321-3

    CAS  PubMed  Google Scholar 

  • Yamada R, Nagasaki H, Nagata Y, Wakabayashi Y, Iwashima A (1989) Administration of d-aspartate increases d-aspartate oxidase activity in mouse liver. Biochim Biophys Acta 990(3):325–328. doi:10.1016/S0304-4165(89)80053-4

    CAS  PubMed  Google Scholar 

  • Yamada RH, Ujiie H, Kera Y, Nakase T, Kitagawa K, Imasaka T, Arimoto K, Takahashi M, Matsumura Y (1996) Purification and properties of d-aspartate oxidase from Cryptococcus humicolus UJ1. Biochim Biophys Acta Protein Struct Mol Enzymol 1294(2):153–158. doi:10.1016/0167-4838(96)00012-x

    Google Scholar 

Download references

Acknowledgments

This work was supported by Award Number R01 NS031609 from National Institute of Neurological Disorders and Stroke, Award Number P30 DA018310 from the National Institute on Drug Abuse, and Award Number CHE-11-11705 from the National Science Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the award agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan V. Sweedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ota, N., Shi, T. & Sweedler, J.V. d-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 43, 1873–1886 (2012). https://doi.org/10.1007/s00726-012-1364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1364-1

Keywords

Navigation