Skip to main content
Log in

Hormonal regulation of leucine catabolism in mammary epithelial cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Branched-chain amino acids (BCAA) are actively taken up and catabolized by the mammary gland during lactation for syntheses of glutamate, glutamine and aspartate. Available evidence shows that the onset of lactation is associated with increases in circulating levels of cortisol, prolactin and glucagon, but decreases in insulin and growth hormone. This study determined the effects of physiological concentrations of these hormones on the catabolism of leucine (a representative BCAA) in bovine mammary epithelial cells. Cells were incubated at 37 °C for 2 h in Krebs buffer containing 3 mM d-glucose, 0.5 mM l-leucine, l-[1-14C]leucine or l-[U-14C]leucine, and 0–50 μU/mL insulin, 0–20 ng/mL growth hormone 0–200 ng/mL prolactin, 0–150 nM cortisol or 0–300 pg/mL glucagon. Increasing extracellular concentrations of insulin did not affect leucine transamination or oxidative decarboxylation, but decreased the rate of oxidation of leucine carbons 2–6. Elevated levels of growth hormone dose dependently inhibited leucine catabolism, α-ketoisocaproate (KIC) production and the syntheses of glutamate plus glutamine. In contrast, cortisol and glucagon increased leucine transamination, leucine oxidative decarboxylation, KIC production, the oxidation of leucine 2–6 carbons and the syntheses of glutamate plus glutamine. Prolactin did not affect leucine catabolism in the cells. The changes in leucine degradation were consistent with alterations in abundances of BCAA transaminase and phosphorylated levels of branched-chain α-ketoacid dehydrogenase. Reductions in insulin and growth hormone but increases in cortisol and glucagon with lactation act in concert to stimulate BCAA catabolism for glutamate and glutamine syntheses. These coordinated changes in hormones may facilitate milk production in lactating mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BCAA:

Branched-chain amino acids

BCAT:

Branched-chain amino acid transferase

BCKA:

Branched-chain α-ketoacids

BCKAD:

Branched-chain α-ketoacid dehydrogenase

HEPES:

4-(2-hydroxyethyl)-1-Piperazineethanesulfonic acid

KIC:

α-Ketoisocaproate

References

  • Abraham S, Madsen J, Chaikoff IL (1964) The influence of glucose on amino acid carbon incorporation into protein, fatty acids and carbon dioxide by lactating mammary gland slice. J Biol Chem 239:855–864

    PubMed  CAS  Google Scholar 

  • Anderson LD, Rillema JA (1976) Effects of hormone on protein and amino acids metabolism in mammary-gland explants of mice. Biochem J 158:355–359

    PubMed  CAS  Google Scholar 

  • Beaufrere B, Horber FF, Schwenk WF et al (1989) Glucocortisteroids increase leucine oxidation and impair leucine balance in humans. Am J Physiol 257:E712–E721

    PubMed  CAS  Google Scholar 

  • Block KP, Richmond WB, Mehard WB et al (1987) Glucocorticoid-mediated activation of muscle branched-chain α-ketoacid dehydrogenase. Am J Physiol 252:E396–E407

    PubMed  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2012) Glutamate: a truly functional amino acid. Amino Acids. doi:10.1007/s00726-012-1280-4

    PubMed  Google Scholar 

  • Buse MG, Buse J (1967) Effect of free fatty acids and insulin on protein synthesis and amino acid metabolism of isolated rat diaphragms. Diabetes 16:753–764

    PubMed  CAS  Google Scholar 

  • Buse MG, Biggers F, Drier C et al (1972) The effect of epinephrine, glucagon, and the nutritional state on the oxidation of branched chain amino acids and pyruvate by isolated hearts and diaphragms of the rat. J Biol Chem 218:697–706

    Google Scholar 

  • Bush JA, Wu G, Suryawan A et al (2002) Somatotropin-induced amino acid conservation in pigs involves differential regulation of liver and gut urea cycle enzyme activity. J Nutr 132:59–67

    PubMed  CAS  Google Scholar 

  • Chew BP, Eisenman JR, Tanaka TS (1984a) Arginine infusion stimulates prolactin, growth hormone, insulin and subsequent lactation in pregnant dairy cows. J Dairy Sci 67:2507–2518

    Article  PubMed  CAS  Google Scholar 

  • Chew BP, Murdock FR, Riley RE et al (1984b) Influence of prepartum dietary crude protein on growth hormone, insulin, reproduction, and lactation of dietary cows. J Dairy Sci 67:270–275

    Article  PubMed  CAS  Google Scholar 

  • Conway ME, Hutson SM (2000) Mammalian branched-chain aminotransferases. Methods Enzymol 324:355–365

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012a) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012b) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids. doi:10.1007/s00726-012-1264-4

    Google Scholar 

  • de Boer G, Trenkle A, Young JW (1985) Glucagon, insulin, growth hormone, and blood metabolites during energy restriction ketonemia of lactating cows. J Dairy Sci 68:326–337

    Article  PubMed  Google Scholar 

  • Desantiago S, Torres N, Suryawan A et al (1998) Regulation of branched-chain amino acid metabolism in the lactating rat. J Nutr 128:1165–1171

    PubMed  CAS  Google Scholar 

  • Fernstrom JD (2012) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids. doi:10.1007/s00726-012-1330-y

    PubMed  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2009) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37:123–129

    Article  PubMed  CAS  Google Scholar 

  • Fu WJ, Stromberg J, Viele K et al (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem 21:561–572

    Article  PubMed  CAS  Google Scholar 

  • Gao KG, Jiang ZY, Lin YC et al (2012) Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42:2207–2214

    Article  PubMed  CAS  Google Scholar 

  • Geng MM, Li TJ, Kong XF et al (2011) Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids 40:1513–1522

    Article  PubMed  CAS  Google Scholar 

  • Gibney J, Healy M, Sönksen PH (2007) The growth hormone/insulin-like growth hormone factor-I axis in exercise and sport. Endocrin Rev 28:603–624

    Article  CAS  Google Scholar 

  • Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Ann Rev Nutr 4:409–454

    Article  CAS  Google Scholar 

  • Harris RA, Kobayashi R, Murakami T et al (2001) Regulation of branched-chain α-keto acid dehydrogenase kinase expression in rat liver. J Nutr 131:841S–845S

    PubMed  CAS  Google Scholar 

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Zhang W et al (2011) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids. doi:10.1007/s00726-011-1191-9

    Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2012) N-Acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids. doi:10.1007/s00726-012-1295-x

    Google Scholar 

  • Hutson SM, Zapalowski C, Cree TC et al (1980) Regulation of leucine and α-ketoisocaproic acid metabolism in skeletal muscle: effect of starvation and insulin. J Biol Chem 255:2418–2426

    PubMed  CAS  Google Scholar 

  • Ichihara A, Noda C, Ogawa K (1973) Control of leucine metabolism with special reference to branched-chain amino acid transaminase isozymes. Adv Enzyme Regul 11:155–166

    Article  PubMed  CAS  Google Scholar 

  • Jones RG, Ilic V, Williamson DH (1984) Regulation of lactating-rat mammary-gland lipogenesis by insulin and glucagon in vivo. Biochem J 233:345–351

    Google Scholar 

  • Kim SW, Wu G (2009) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kong XF, Tan BE, Yin YL et al (2011) l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem. doi:10.1016/j.jnutbio.2011.06.012

    Google Scholar 

  • Lei J, Feng DY, Zhang YL et al (2012a) Nutritional and regulatory role of branched-chain amino acids in lactation. Front Biosci 17:2725–2739

    Article  Google Scholar 

  • Lei J, Feng DY, Zhang YL et al (2012b) Regulation of leucine catabolism by metabolic fuels in mammary epithelial cells. Amino Acids. doi:10.1007/s00726-012-1302-2

    Google Scholar 

  • Li P, Knabe DA, Kim SW et al (2009) Lactating porcine mammary tissue catabolized branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139:1502–1509

    Article  PubMed  CAS  Google Scholar 

  • Li FN, Yin YL, Tan BE et al (2011a) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Rezaei R, Li P et al (2011b) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Liu XD, Wu X, Yin YL et al (2012) Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids 42:2111–2119

    Article  PubMed  CAS  Google Scholar 

  • Mallette LE, Exton JH, Park CR (1969) Effect of glucagon on amino acid transport and utilization in the perfused rat liver. J Biol Chem 244:5724–5728

    PubMed  CAS  Google Scholar 

  • Marinelli L, Trevisi E, Dalt LD et al (2007) Dehydroepiandrosterone secretion in dairy cattle is episodic and unaffected by ACTH stimulation. Endocrinol 194:627–635

    Article  CAS  Google Scholar 

  • Pavelić K, Pavelić J (1980) Glucagon suppressed proliferation rate of mammary aplastic carcinoma in mice. Horm Metab Res 12:243–246

    Article  PubMed  Google Scholar 

  • Ren WK, Luo W, Wu MM et al (2011a) Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids. doi:10.1007/s00726-011-1134-5

    Google Scholar 

  • Ren W, Yin YL, Liu G et al (2011b) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids. doi:10.1007/s00726-011-0942-y

    Google Scholar 

  • Robson NA, Clegg RA, Zammit VA (1984) Regulation of peripheral lipogenesis by glucagon. Inability of the hormone to inhibit lipogenesis in rat mammary acini in vitro in the presence or absence of agents which alter its effects on adipocytes. Biochem J 217:743–749

    PubMed  CAS  Google Scholar 

  • Sartin JL, Cummins KA, Keppainen RJ et al (1985) Glucagon, insulin, and growth hormone responses to glucose infusion in lactating dairy cows. Am J Physiol 248:E108–E114

    PubMed  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2011) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids. doi:10.1007/s00726-011-1168-8

    Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids. doi:10.1007/s00726-012-1235-9

    Google Scholar 

  • She P, Van Horn C, Reid T et al (2007) Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol 293:E1552–E1563

    CAS  Google Scholar 

  • Shirai A, Ichihara A (1971) Transaminase of branched chain amino acids. VII. Further studies on regulation of isozyme activities in rat liver and kidney. Biochem J 70:741–748

    CAS  Google Scholar 

  • Sinclair BR, Back P, Davis SR et al (2009) Insulin regulation of amino-acid metabolism in the mammary gland of sheep in early lactation and fed fresh forage. Animal 3:858–870

    Article  PubMed  CAS  Google Scholar 

  • Suryawan A, Davis TA (2011) Regulation of protein synthesis by amino acids in muscle of neonates. Front Biosci 16:1445–1460

    Article  CAS  Google Scholar 

  • Suryawan A, Nguyen HV, Almonaci RD et al (2012) Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated. Amino Acids. doi:10.1007/s00726-012-1326-7

    PubMed  Google Scholar 

  • Tan BE, Yin YL, Kong XF et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ et al (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22:441–445

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Li XG, Yin YL et al (2012) Regulatory roles for l-arginine in reducing white adipose tissue. Front Biosci 17:2237–2246

    Article  Google Scholar 

  • Viña JR, Williamson DH (1981) Effects of lactation on l-leucine metabolism in the rat. Biochem J 194:941–947

    PubMed  Google Scholar 

  • Wang JJ, Chen LX, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Wang JJ, Wu ZL, Li DF et al (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17:282–301

    Article  PubMed  CAS  Google Scholar 

  • Watson CJ, Burdon TG (1996) Prolactin signal transduction mechanisms in the mammary gland: the role of the Jak/Stat pathway. Rev Reprod 1:1–5

    Article  PubMed  CAS  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    Article  PubMed  CAS  Google Scholar 

  • Wilson FA, Suryawan A, Orellana RA et al (2011) Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs. Amino Acids 40:157–165

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acid in sow’s colostrum and milk. J Nutr 124:415–424

    PubMed  CAS  Google Scholar 

  • Wu G, Thompson JR (1987) Ketone bodies inhibit leucine degradation in chick skeletal muscle. Int J Biochem 19:937–943

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Thompson JR (1988) The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick. Biochem J 255:139–144

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE et al (1996) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011a) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011b) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Xi PB, Jiang ZY, Dai ZL et al (2011) Regulation of protein turnover by l-glutamine in porcine intestinal epithelial cells. J Nutr Biochem. doi:10.1016/j.jnutbio.2011.05.009

    PubMed  Google Scholar 

  • Yao K, Yin YL, Li XL et al (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42:2491–2500

    Article  PubMed  CAS  Google Scholar 

  • Yin YL, Yao K, Liu ZJ et al (2010) Supplementing l-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39:1477–1486

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Jian Lei was supported by a Postgraduate Scholarship from South China Agricultural University. Work in the authors’ laboratories was supported by the National Natural Science Foundation of China grants (#31172217 and 30901041), the Thousand-People Talent Program at China Agricultural University, Chinese Universities Scientific Funds (#2012RC024), China Agricultural University postdoctoral funds, National Research Initiative Competitive Grants (#2008-35206-18764 and 2008-35203-19120) from the USDA National Institute of Food and Agriculture, Texas AgriLife Research Hatch Project (#H-8200) and American Heart Association (#10GRNT4480020). We thank Dr. Susan Hutson and Dr. Christopher Lynch for the kind provision of BCAT and BCKAD E1α antibodies, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Lei or Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, J., Feng, D., Zhang, Y. et al. Hormonal regulation of leucine catabolism in mammary epithelial cells. Amino Acids 45, 531–541 (2013). https://doi.org/10.1007/s00726-012-1332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1332-9

Keywords

Navigation