Skip to main content
Log in

Differing views of the role of selenium in thioredoxin reductase

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This review covers three different chemical explanations that could account for the requirement of selenium in the form of selenocysteine in the active site of mammalian thioredoxin reductase. These views are the following: (1) the traditional view of selenocysteine as a superior nucleophile relative to cysteine, (2) the superior leaving group ability of a selenol relative to a thiol due to its significantly lower pK a and, (3) the superior ability of selenium to accept electrons (electrophilicity) relative to sulfur. We term these chemical explanations as the “chemico-enzymatic” function of selenium in an enzyme. We formally define the chemico-enzymatic function of selenium as its specific chemical property that allows a selenoenzyme to catalyze its individual reaction. However we, and others, question whether selenocysteine is chemically necessary to catalyze an enzymatic reaction since cysteine-homologs of selenocysteine-containing enzymes catalyze their specific enzymatic reactions with high catalytic efficiency. There must be a unique chemical reason for the presence of selenocysteine in enzymes that explains the biological pressure on the genome to maintain the complex selenocysteine-insertion machinery. We term this biological pressure the “chemico-biological” function of selenocysteine. We discuss evidence that this chemico-biological function is the ability of selenoenzymes to resist inactivation by irreversible oxidation. The way in which selenocysteine confers resistance to oxidation could be due to the superior ability of the oxidized form of selenocysteine (Sec-SeO2 , seleninic acid) to be recycled back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of cysteine-sulfinic acid to cysteine (Cys-SO2 to Cys-SH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 6
Fig. 7
Scheme 5
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. There are in fact 25 genes for selenocysteine-containing proteins in the human genome. The actual number of proteins is somewhat larger due to alternatively spliced transcripts.

  2. There is considerable confusion in the literature in calculating the oxidation number of sulfur and selenium compounds. For the compounds shown in Fig. 8, we have chosen to base the oxidation number on that of sulfuric acid (S = +6). Using this as a reference compound, the S atom in methyl phenyl sulfoxide has an oxidation number of +4 and the S atom in methyl phenyl sulfone has an oxidation number of +6. This convention has the benefit of having the valence number equal to the oxidation number.

References

  • Anestål K, Prast-Nielsen S, Cenas N, Arnér ES (2008) Cell death by SecTRAPs: thioredoxin reductase as a prooxidant killer of cells. PLoS One 3:e1846

    Article  PubMed  Google Scholar 

  • Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH Jr (1997) The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci USA 94:3621–3626

    Article  PubMed  CAS  Google Scholar 

  • Assmann A, Briviba K, Sies H (1998) Reduction of methionine selenoxide to selenomethionine by glutathione. Arch Biochem Biophys 349:201–203

    Article  PubMed  CAS  Google Scholar 

  • Atkins JF, Gesteland RF (2000) The twenty-first amino acid. Nature 407:463, 465

    Google Scholar 

  • Bachrach SM, Demoin DW, Luk M, Miller JV Jr (2004) Nucleophilic attack at selenium in diselenides and selenosulfides. A computational study. J Phys Chem A 108:4040–4046

    Article  CAS  Google Scholar 

  • Back TG (1987) Electrophilic selenium reactions. In: Liotta D (ed) Organoselenium chemistry. Wiley-Interscience, New York, pp 1–125

    Google Scholar 

  • Bauer H, Massey V, Arscott LD, Schirmer RH, Ballou DP, Williams CH Jr (2003) The mechanism of high M r thioredoxin reductase from Drosophila melanogaster. J Biol Chem 278(3):3020–3028

    Article  Google Scholar 

  • Bell IM, Fisher ML, Wu ZP, Hilvert D (1993) Kinetic studies on the peroxidase activity of selenosubtilisin. Biochemistry 32:3754–3762

    Article  PubMed  CAS  Google Scholar 

  • Benson SW (1978) Thermochemistry and kinetics of sulfur-containing molecules and radicals. Chem Rev 78:23–35

    Article  CAS  Google Scholar 

  • Birringer M, Pilawa P, Flohe F (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  PubMed  CAS  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    Article  PubMed  CAS  Google Scholar 

  • Biterova EI, Turanov AA, Gladyshev VN, Barycki JJ (2005) Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism. Proc Natl Acad Sci USA 102:15018–15023

    Article  PubMed  CAS  Google Scholar 

  • Bock A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520

    Article  PubMed  CAS  Google Scholar 

  • Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235

    Article  PubMed  CAS  Google Scholar 

  • Burns JA, Whitesides GM (1990) Predicting the stability of cyclic disulfides by molecular modeling: “effective concentrations” in thiol-disulfide interchange and the design of strongly reducing dithiols. J Am Chem Soc 112:6296–6303

    Article  CAS  Google Scholar 

  • Carugo O, Cemazar M, Zahariev S, Hudáky I, Gáspári Z, Perczel A, Pongor S (2003) Vicinal disulfide turns. Protein Eng 16:637–639

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Sandalova T, Lindqvist Y, Arnér ES (2009) Crystal structure and catalysis of the selenoprotein thioredoxin reductase-1. J Biol Chem 284:3998–4008

    Article  PubMed  CAS  Google Scholar 

  • Coles MP (2006) Utilization of nonbonded interactions involving organoselenium compounds. Curr Org Chem 10:1993–2005

    Article  CAS  Google Scholar 

  • Danehy JP, Noel CJ (1960) The relative nucleophilic character of several mercaptans toward ethylene oxide. J Am Chem Soc 82:2511–2515

    Article  CAS  Google Scholar 

  • Danehy JP, Elia VJ, Lavelle CJ (1971) The alkaline decomposition of organic disulfides. IV. A limitation on the use of Ellman’s reagent, 2,2′-dinitro-5,5′-dithiodibenzoic acid. J Org Chem 36:1003–1005

    Article  CAS  Google Scholar 

  • Eckenroth B, Harris K, Turanov AA, Gladyshev VN, Raines RT, Hondal RJ (2006) Semisynthesis and characterization of mammalian thioredoxin reductase. Biochemistry 45:5158–5170

    Article  PubMed  CAS  Google Scholar 

  • Eckenroth BE, Lacey BM, Lothrop AP, Harris KM, Hondal RJ (2007a) Investigation of the C-terminal redox center of high M r thioredoxin reductases by protein engineering and semisynthesis. Biochemistry 46:9472–9483

    Article  PubMed  CAS  Google Scholar 

  • Eckenroth BE, Rould MA, Hondal RJ, Everse SJ (2007b) Structural and biochemical studies reveal differences in the catalytic mechanisms of mammalian and Drosophila melanogaster thioredoxin reductases. Biochemistry 46:4694–4705

    Article  PubMed  CAS  Google Scholar 

  • Finlayson AJ, MacKenzie SL, Finley JW (1979) Reaction of alanine-3-sulfinic acid with 2-mercaptoethanol. Can J Chem 57:2073–2077

    Article  CAS  Google Scholar 

  • Flemer S Jr, Lacey BM, Hondal RJ (2008) Synthesis of peptide substrates for mammalian thioredoxin reductase. J Pept Sci 14:637–647

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer K, Leinfelder W, Bock A (1989) Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342:453–456

    Article  PubMed  CAS  Google Scholar 

  • Gascoigne IM, Radda GK (1967) The chemistry of flavins and flavoproteins. 3. The reaction of dihydrolipoic acid with flavins. Biochim Biophys Acta 131:498–507

    Article  PubMed  CAS  Google Scholar 

  • Gladyshev VN (2006) Plenary lecture. In: 8th International symposium on selenium in biology and medicine. Madison, WI, USA

  • Gladyshev VN, Kryukov GV (2001) Evolution of selenocysteine-containing proteins: significance of identification and functional characterization of selenoproteins. Biofactors 14:87–92

    Article  PubMed  CAS  Google Scholar 

  • Gladyshev VN, Krause M, Xu XM, Korotkov KV, Kryukov GV, Sun QA, Lee BJ, Wootton JC, Hatfield DL (1999) Selenocysteine-containing thioredoxin reductase in C. elegans. Biochem Biophys Res Commun 259:244–249

    Article  PubMed  CAS  Google Scholar 

  • Gromer S, Gross JH (2002) Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium. J Biol Chem 277:9701–9706

    Article  PubMed  CAS  Google Scholar 

  • Gromer S, Wissing J, Behne D, Ashmans D, Schirmer RH, Flohe L, Becker K (1998) A hypothesis on the catalytic mechanism of the selenoenzyme thioredoxin reductase. Biochem J 332:591–592

    PubMed  CAS  Google Scholar 

  • Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH Jr, Schirmer RH, Arnér ES (2003) Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci USA 100:12618–12623

    Article  PubMed  CAS  Google Scholar 

  • Heider J, Baron C, Bock A (1992) Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J 11:3759–3766

    PubMed  CAS  Google Scholar 

  • Hellwinkel D (1972) Hypervalent organic derivatives of tellurium and selenium. Ann NY Acad Sci 192:158–166

    Article  Google Scholar 

  • Herschlag D (1994) Ribonuclease revisited: catalysis via the classical general acid-base mechanism or a triester-like mechanism? J Am Chem Soc 116:11631–11635

    Article  CAS  Google Scholar 

  • Hondal RJ, Nilsson BL, Raines RT (2001) Selenocysteine in native chemical ligation and expressed protein ligation. J Am Chem Soc 123:5140–5141

    Article  PubMed  CAS  Google Scholar 

  • House KL, Garber AR, Dunlap RB, Odom JD, Hilvert D (1993) 1H-NMR spectroscopic studies of selenosubtilisin. Biochemistry 32:3468–3473

    Article  PubMed  CAS  Google Scholar 

  • Huang HH, Arscott LD, Ballou DP, Williams CH Jr (2008) Acid-base catalysis in the mechanism of thioredoxin reductase from Drosophila melanogaster. Biochemistry 47:1721–1731

    Article  PubMed  CAS  Google Scholar 

  • Huber RE, Criddle RS (1967) Comparison of the chemical properties of selenocysteine and selenocysteine and their sulfur analogs. Arch Biochem Biophys 122:164–173

    Article  PubMed  CAS  Google Scholar 

  • Hudaky I, Gaspari Z, Carugo O, Cemazar M, Pongor S, Perczel A (2004) Vicinal disulfide bridge conformers by experimental methods and by ab initio and DFT molecular computations. Proteins 55:152–168

    Article  PubMed  CAS  Google Scholar 

  • Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl 42:4742–4758

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Noel JP (2000) Mechanism of chalcone synthase. pK a of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J Biol Chem 275:39640–39646

    Article  PubMed  CAS  Google Scholar 

  • Johnson FA, Lewis SD, Shafer JA (1981) Perturbations in the free energy and enthalpy of ionization of histidine-159 at the active site of papain as determined by fluorescence spectroscopy. Biochemistry 20:52–58

    Article  PubMed  CAS  Google Scholar 

  • Jukes TH (1990) Genetic code 1990. Outlook. Experientia 46:1149–1157

    Article  PubMed  CAS  Google Scholar 

  • Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Muller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K (2001) Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291:643–646

    Article  PubMed  CAS  Google Scholar 

  • Kice JL, Lee TWS (1978) Oxidation-reduction reactions of organoselenium compounds. 1. Mechanism of the reaction between seleninic acids and thiols. J Am Chem Soc 100:5094–5102

    Article  CAS  Google Scholar 

  • Kice JL, Sleblocka-Tilk H (1982) Reactivity of nucleophiles toward and the site of nucleophilic attack on bis(alkylthio) selenides. J Am Chem Soc 104:7123–7130

    Article  CAS  Google Scholar 

  • Kice JL, Lee TWS, Pan S-t (1980) Mechanism of the reaction of thiols with selenite. J Am Chem Soc 102:4448–4455

    Article  CAS  Google Scholar 

  • Krause RJ, Elfarra AA (2009) Reduction of l-methionine selenoxide to seleno-l-methionine by endogenous thiols, ascorbic acid, or methimazole. Biochem Pharmacol 77:134–140

    Article  PubMed  CAS  Google Scholar 

  • Kravchuk AV, Zhao L, Kubiak RJ, Bruzik KS, Tsai M-D (2001) Mechanism of phosphatidylinositol-specific phospholipase C: origin of unusually high nonbridging thio effects. Biochemistry 40:5433–5439

    Article  PubMed  CAS  Google Scholar 

  • Krol A (2002) Evolutionarily different RNA motifs and RNA-protein complexes to achieve selenoprotein synthesis. Biochimie 84:765–774

    Article  PubMed  CAS  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Bjornstedt M, Holmgren A (1992) Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem 207:435–439

    Article  PubMed  CAS  Google Scholar 

  • Lacey BM, Hondal RJ (2006) Characterization of mitochondrial thioredoxin reductase from C. elegans. Biochem Biophys Res Commun 346:629–636

    Article  PubMed  CAS  Google Scholar 

  • Lacey BM, Eckenroth BE, Flemer S, Hondal RJ (2008) Selenium in thioredoxin reductase: a mechanistic perspective. Biochemistry 47:12810–12821

    Article  PubMed  CAS  Google Scholar 

  • Larsson LO, Kierkegaard P (1969) The crystal structure of sodium sulphite: a refinement allowing for the effect of crystal twinning. Acta Chem Scand 23:2253–2260

    Article  CAS  Google Scholar 

  • Lee SR, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG (2000) Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci USA 97:2521–2526

    Article  PubMed  CAS  Google Scholar 

  • Leinfelder W, Forchhammer K, Zinoni F, Sawers G, Mandrand-Berthelot MA, Bock A (1988a) Escherichia coli genes whose products are involved in selenium metabolism. J Bacteriol 170:540–546

    PubMed  CAS  Google Scholar 

  • Leinfelder W, Zehelein E, Mandrand-Berthelot MA, Bock A (1988b) Gene for a novel tRNA species that accepts l-serine and cotranslationally inserts selenocysteine. Nature 331:723–725

    Article  PubMed  CAS  Google Scholar 

  • Lewis SD, Johnson FA, Shafer JA (1981) Effect of cysteine-25 on the ionization of histidine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy. Evidence for a His-159–Cys-25 ion pair and its possible role in catalysis. Biochemistry 20:48–51

    Article  PubMed  CAS  Google Scholar 

  • Lothrop AP, Ruggles EL, Hondal RJ (2009) No selenium required: Reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue. Biochemistry 48:6213–6223

    Article  PubMed  CAS  Google Scholar 

  • Low SC, Berry MJ (1996) Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci 21:203–208

    PubMed  CAS  Google Scholar 

  • Maeda H, Katayama K, Matsuno H, Uno T (2006) 3′-(2,4-Dinitrobenzenesulfonyl)-2′, 7′-dimethylfluorescein as a fluorescent probe for selenols. Angew Chem Int Ed Engl 45:1810–1813

    Article  PubMed  CAS  Google Scholar 

  • Mugesh G, Sing HB (2000) Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem Soc Rev 29:347–357

    Article  CAS  Google Scholar 

  • Musher JI (1972) Some aspects of bonding and structure in hypervalent selenium and tellurium chemistry. Ann NY Acad Sci 192:52–59

    Article  Google Scholar 

  • Nalvarte I, Damdimopoulos AE, Nystöm C, Nordman T, Miranda-Vizuete A, Olsson JM, Eriksson L, Björnstedt M, Arnér ES, Spyrou G (2004) Overexpression of enzymatically active human cytosolic and mitochondrial thioredoxin reductase in HEK-293 cells: effect on cell growth and differentiation. J Biol Chem 279:54510–54517

    Article  PubMed  CAS  Google Scholar 

  • Nelson JW, Creighton TE (1994) Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33:5974–5983

    Article  PubMed  CAS  Google Scholar 

  • Oae S, Togo H, Numata T, Fujimori K (1980) Facile reduction of sulfinic acid to disulfide with thiol and chlorotrimethylsilane. Chem Lett 9:1193–1196

    Article  Google Scholar 

  • Odom JD (1983) Selenium biochemistry chemical and physical studies. Struct Bond 54:1–26

    Article  CAS  Google Scholar 

  • Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    PubMed  CAS  Google Scholar 

  • Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89:1827–1836

    Article  CAS  Google Scholar 

  • Pearson RG, Songstad J (1968) Nucleophilic reactivity constants toward methyl iodide and trans-[Pt(py)2Cl2]. J Am Chem Soc 90:319–326

    Article  CAS  Google Scholar 

  • Rabenstein DR, Scott TM, Geo W (1991) Nuclear magnetic resonance study of the kinetics of the penicillamine/bis(penicillamine) selenide symmetrical exchange reaction. J Org Chem 56:4176–4181

    Article  CAS  Google Scholar 

  • Reich HJ (1978) Organoselenium oxidations. In: Trahanovsky WW (ed) Oxidation in organic chemistry, part C. Academic Press, New York

    Google Scholar 

  • Reich HJ, Gudmundsson BO, Green DP, Bevan MJ, Reich IL (2002) The role of ate complexes in the lithium-sulfur, lithium-selenium and lithium-tellurium exchange reactions. Helv Chim Acta 85:3748–3772

    Article  CAS  Google Scholar 

  • Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38:1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Robinson R (2005) Selenium speeds reactions. PLoS Biol 3:e419

    Article  Google Scholar 

  • Sandman KE, Benner JS, Noren CJ (2000) Phage display of selenopeptides. J Am Chem Soc 122:960–961

    Article  CAS  Google Scholar 

  • Sarma BK, Mugesh G (2005) Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: unexpected complications with thiol exchange reactions. J Am Chem Soc 127:11477–11485

    Article  PubMed  CAS  Google Scholar 

  • Sarma BK, Mugesh G (2006) Biomimetic studies on selenoenzymes: modeling the role of proximal histidines in thioredoxin reductases. Inorg Chem 45:5307–5314

    Article  PubMed  CAS  Google Scholar 

  • Seebach D, Meyer N, Beck AK (1977) α-Heterosubstituted organyllithium compounds by selenium/lithium-exchange; directed coupling of carbonyl compounds. Justus Liebigs Ann Chem 5:846–858

    Article  Google Scholar 

  • Shimizu T, Kobayahi M, Kamigata N (1988) Configurational stability of optically active selenoxides: racemization via achiral hydrate. Bull Chem Soc Jpn 61:3761–3763

    Article  CAS  Google Scholar 

  • Singh R, Whitesides GM (1990) Degenerate intermolecular thiolate-disulfide interchange involving cyclic five-membered disulfides is faster by 103 than that involving six- or seven-membered disulfides. J Am Chem Soc 112:6304–6309

    Article  CAS  Google Scholar 

  • Smoes S, Drowart J (1984) Determination of the dissociation energy of selenium monoxide by the mass-spectrometric Knudsen-cell method. J Chem Soc Faraday Trans 2 80:1171–1180

    Article  CAS  Google Scholar 

  • Squires JE, Berry MJ (2008) Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 60:232–235

    Article  PubMed  CAS  Google Scholar 

  • Syed R, Wu ZP, Hogle JM, Hilvert D (1993) Crystal structure of selenosubtilisin at 2.0-Å resolution. Biochemistry 32:6157–6164

    Article  PubMed  CAS  Google Scholar 

  • Taskov K, Chapple C, Kryukov GV, Castellano S, Lobanov AV, Korotkov KV, Guigó R, Gladyshev VN (2005) Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome? Nucleic Acids Res 33:2227–2238

    Article  PubMed  CAS  Google Scholar 

  • Tormay P, Böck A (1997) Barriers to heterologous expression of a selenoprotein gene in bacteria. J Bacteriol 179:576–582

    PubMed  CAS  Google Scholar 

  • Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 388:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Wickleder MS (2002) Sodium selenite, Na2SeO3. Acta Cryst E58:i103–i104

    CAS  Google Scholar 

  • Williams CH, Arscott LD, Muller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH (2000) Thioredoxin reductase: two modes of catalysis have evolved. Eur J Biochem 267:6110–6117

    Article  PubMed  CAS  Google Scholar 

  • Wu Z-P, Hilvert D (1989) Conversion of a protease into an acyl transferase: selenosubtilisin. J Am Chem Soc 111:4513–4514

    Article  CAS  Google Scholar 

  • Wu Z-P, Hilvert D (1990) Selenosubtilisin as a glutathione peroxidase mimic. J Am Chem Soc 112:5647–5648

    Article  CAS  Google Scholar 

  • Zhong L, Holmgren A (2000) Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem 275:18121–18128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express deep gratitude to Hans J. Reich for the many hours of conversation spent on this subject and for his help in guiding our hypotheses. This work was supported by National Institutes of Health Grant GM070742 to RJH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Hondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hondal, R.J., Ruggles, E.L. Differing views of the role of selenium in thioredoxin reductase. Amino Acids 41, 73–89 (2011). https://doi.org/10.1007/s00726-010-0494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0494-6

Keywords

Navigation