Skip to main content
Log in

Single-Sided Stray-Field NMR Profiling Using Chirped Radiofrequency Pulses

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Single-sided nuclear magnetic resonance (NMR) scanners find increased use in applications where non-destructive measurements are needed. These single-sided scanners are characterized by a weak magnetic field and a large stray magnetic field gradient. These characteristics make these scanners suitable for determining a sample’s proton density profile, or for mapping NMR properties such as T 1, T 2 or diffusivity as a function of distance. The strong stray-field gradient generated by these magnets dictates a need for relatively high transmission/reception bandwidths, even when thin slices are involved. Consequently, scanning a large volume demands multiple separate measurements, associated with long scan times, potential inaccuracies associated with mechanical misplacements and limitations in tackling certain in vivo or dynamic systems. This work explores the consequences of replacing the hard pulses in the usual multi-echo sequence used in this kind of scanner, with frequency-swept (chirped) pulses. It was found that, under identical echo times and number of echoes, peak power-limited cases like the ones usually involved in these setups endow chirped-pulse sequences with a higher sensitivity than their square-pulse counterparts. Furthermore, data can be extracted in this manner faster; it can also be measured from larger slabs following a single excitation, thereby avoiding the need for multiple mechanical motions of the scanner/sample. Still, at least with the system hereby assayed, hardware limitations prevented us from utilizing equally short echo times for square- as well as chirped-pulse implementations. Given the shorter echo delays that could be used in the square-pulse versions, optimal acquisitions ended up endowing the latter with the best overall sensitivity defined as signal intensity per unit acquisition time. Potential bypasses of this limitation are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.V. Landeghem, E. Danieli, J. Perlo, B. Blümich, F. Casanova, J. Magn. Reson. 215, 74 (2012)

    Article  ADS  Google Scholar 

  2. N. Proietti, D. Capitani, E. Pedemonte, B. Blümich, A.L. Segre, J. Magn. Reson. 170, 113 (2004)

    Article  ADS  Google Scholar 

  3. K. Münnemann, T. Böni, G. Colacicco, B. Blümich, F. Rühli, Magn. Reson. Imag. 25, 1341 (2007)

    Article  Google Scholar 

  4. F. Rühli, T. Böni, J. Perlo, F. Casanova, M. Baias, E. Egarter, B. Blümich, J. Cult. Herit. 8, 257 (2007)

    Article  Google Scholar 

  5. B. Blümich, S. Anferova, S. Sharma, A. Segre, C. Federici, J. Magn. Reson. 161, 204 (2003)

    Article  ADS  Google Scholar 

  6. F. Presciutti, J. Perlo, F. Casanova, S. Glöggler, C. Miliani, B. Blümich, B.G. Brunetti, A. Sgamellotti, Appl. Phys. Lett. 93, 033505 (2008)

    Article  ADS  Google Scholar 

  7. N. Proietti, S. Cozzolino, D. Capitani, A. Segre, B. Blümich, Recupero e conservazione 72, 54 (2006)

    Google Scholar 

  8. G. Eidmann, R. Savelsberg, P. Blümler, B. Blümich, J. Magn. Reson. A 122, 104 (1996)

    Article  ADS  Google Scholar 

  9. J. Perlo, F. Casanova, B. Blümich, J. Magn. Reson. 176, 64 (2005)

    Article  ADS  Google Scholar 

  10. V.J. Basus, P.D. Ellis, H.D. Hill, J.S. Waugh, J. Magn. Reson. 35, 19 (1979)

    ADS  Google Scholar 

  11. R. Fu, G. Bodenhausen, Chem. Phys. Lett. 245, 415 (1995)

    Article  ADS  Google Scholar 

  12. L. O’Dell, A.J. Rossini, R.W. Schurko, Chem. Phys. Lett. 468, 330 (2009)

    Article  ADS  Google Scholar 

  13. A.W. MacGregor, L.A. O’Dell, R.W. Schurko, J. Magn. Reson. 208, 103 (2011)

    Article  ADS  Google Scholar 

  14. L.B. Casabianca, D. Mohr, S. Mandal, Y.Q. Song, L. Frydman, J. Magn. Reson. 242, 197 (2014)

    Article  ADS  Google Scholar 

  15. D. Kunz, Magn. Reson. Med. 3, 377 (1986)

    Article  Google Scholar 

  16. Y. Shrot, L. Frydman, J. Magn. Reson. 172, 179 (2005)

    Article  ADS  MATH  Google Scholar 

  17. A. Tal, L. Frydman, Prog. Nucl. Mag. Res. Sp. 57, 241 (2010)

    Article  Google Scholar 

  18. R. Bhattacharyya, L. Frydman, J. Chem. Phys. 127, 194503 (2007)

    Article  ADS  Google Scholar 

  19. T. Gullion, D.B. Baker, M.S. Conradi, J. Magn. Reson. 89, 479 (1990)

    ADS  Google Scholar 

  20. N. Ben-Eliezer, M. Irani, L. Frydman, Magn. Reson. Med. 63, 1594 (2010)

    Article  Google Scholar 

  21. M.A. Bernstein, K.E. King, X.J. Zhou, W. Fong, Handbook of MRI pulse sequences (Elsevier, Burlington, 2004)

    Google Scholar 

  22. P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon Press, Oxford, 1991), pp. 201–208

    Google Scholar 

  23. Y. Zur, S. Stokar, J. Magn. Reson. 71, 212 (1987)

    ADS  Google Scholar 

Download references

Acknowledgments

Financial support from the Israel Science Foundation (grant ISF 795/13), the Mary Ralph Designated Philanthropic Fund and the generosity of the Perlman Family Foundation are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leah B. Casabianca, Uri Nevo or Lucio Frydman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casabianca, L.B., Sarda, Y., Bergman, E. et al. Single-Sided Stray-Field NMR Profiling Using Chirped Radiofrequency Pulses. Appl Magn Reson 46, 909–919 (2015). https://doi.org/10.1007/s00723-015-0693-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0693-0

Keywords

Navigation