Skip to main content
Log in

A Miniature Electron Spin Resonance Probehead for Transcutaneous Oxygen Monitoring

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Oxygen concentration in the skin is an important clinical indicator for monitoring pathological conditions such as chronic wounds, skin cancer, and peripheral vascular disease. Currently, the only clinically approved method for acquiring these oxygen levels is based on electrochemical measurements that employ Clarke-type electrodes attached to the skin. This technique has many drawbacks and limitations, making it unattractive for standard medical practice and care. Electron spin resonance (ESR), which can obtain the oxygen concentration through measurements of the spin–spin relaxation time (T 2) of paramagnetic species interacting with molecular oxygen, provides a possible alternative. However, a traditional ESR setup requires a large homogenous static magnetic field source with limited gap between the poles and complicated equipment, making it unattractive for clinical use. Here, we present a new design for a miniature ESR probehead, which is comprised of a specially designed permanent magnet and a small microwave resonator. The small size of the probehead (36 mm diameter cylinder with a height of 24 mm) enables transcutaneous measurements from virtually any part of the skin. Compared to the electrochemical method, this ESR-based approach may provide faster and more accurate readings of oxygen concentration in the skin, making it highly attractive for future clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.D. Restrepo, K.R. Hirst, L. Wittnebel, R. Wettstein, Respir. Care 57, 1955–1962 (2012)

    Article  Google Scholar 

  2. M. Hockel, K. Schlenger, M. Mitze, U. Schaffer, P. Vaupel, Semin. Radiat. Oncol. 6, 3–9 (1996)

    Article  Google Scholar 

  3. H.M. Swartz, B.B. Williams, R.J. Nicolalde, E. Demidenko, A.B. Flood, Radiat. Meas. 46, 742–748 (2011)

    Article  Google Scholar 

  4. G.M. Gordillo, R. Schlanger, W.A. Wallace, V. Bergdall, R. Bartlett, C.K. Sen, Oxyg. Sens. 381, 575–585 (2004)

    Article  Google Scholar 

  5. H.W. Hopf, J.J. Gibson, A.P. Angeles, J.S. Constant, J.J. Feng, M.D. Rollins, M.Z. Hussain, T.K. Hunt, Wound. Repair. Regen. 13, 558–564 (2005)

    Article  Google Scholar 

  6. R. Ogrin, M. Woodward, G. Sussman, Z. Khalil, Int. Wound. J. 8, 437–445 (2011)

    Article  Google Scholar 

  7. K.A. Arsenault, A. Al-Otaibi, P.J. Devereaux, K. Thorlund, J.G. Tittley, R.P. Whitlock, Eur. J. Vasc. Endovasc. Surg. 43, 329–336 (2012)

    Article  Google Scholar 

  8. R.J. Kopotic, Anesth. Analg. 105, S103–S105 (2007)

    Article  Google Scholar 

  9. A.A. Saber, K.Z. Yahya, A. Rao, M. Castellano, M. Cioroiu, R. Grossi, R.M. Tornambe, J. Invest. Surg. 18, 321–323 (2005)

    Article  Google Scholar 

  10. R.E. Grolman, D.K. Wilkerson, J. Taylor, P. Allinson, M.A. Zatina, Am. Surg. 67, 1072–1079 (2001)

    Google Scholar 

  11. S. Ogawa, T.M. Lee, A.R. Kay, D.W. Tank, Proc. Natl. Acad. Sci. USA 87, 9868–9872 (1990)

    Article  ADS  Google Scholar 

  12. G. Ilangovan, J.L. Zweier, P. Kuppusamy, J. Magn. Reson. 170, 42–48 (2004)

    Article  ADS  Google Scholar 

  13. R.P. Pandian, N.L. Parinandi, G. Ilangovan, J.L. Zweier, P. Kuppusamy, Free Radic. Biol. Med. 35, 1138–1148 (2003)

    Article  Google Scholar 

  14. M. Afeworki, N.R. Miller, N. Devasahayam, J. Cook, J.B. Mitchell, S. Subramanian, M.C. Krishna, Free Radic. Biol. Med. 25, 72–78 (1998)

    Article  Google Scholar 

  15. N. Khan, H.G. Hou, P. Hein, R.J. Comi, J.C. Buckey, O. Grinberg, I. Salikhov, S.Y. Lu, H. Wallach, H.M. Swartz, Oxyg. Transp. Tissue Xxvi. 566, 119–125 (2005)

    Article  Google Scholar 

  16. M. Khan, V.K. Kutala, S. Wisel, S.M. Chacko, M.L. Kuppusamy, P. Kwiatkowski, P. Kuppusamy, Oxyg. Transp. Tissue Xxix. 614, 45–52 (2008)

    Article  Google Scholar 

  17. E. Eteshola, P. Kuppusamy, G. Meenakshisundaram, B. Rivera, in Devices and methods for measuring oxygen, ed. by T.O.S.U.R. Foundation, US patent application US20120296188 (2012)

  18. A. Blank, G. Alexandrowicz, L. Muchnik, G. Tidhar, J. Schneiderman, R. Virmani, E. Golan, Magn. Reson. Med. 54, 105–112 (2005)

    Article  Google Scholar 

  19. A. Blank, S. Ish-Shalom, L. Shtirberg, Y. Zur, Magn. Reson. Med. 62, 1585–1596 (2009)

    Article  Google Scholar 

  20. K. Sirota, Y. Twig, A. Blank, Appl. Magn. Reson. 44, 671–689 (2013)

    Article  Google Scholar 

  21. R.P. Pandian, M. Dolgos, C. Marginean, P.M. Woodward, P.C. Hammel, P.T. Manoharan, P. Kuppusamy, J. Mater. Chem. 19, 4138–4147 (2009)

    Article  Google Scholar 

  22. R.P. Pandian, Y.I. Kim, P.M. Woodward, J.L. Zweier, P.T. Manoharan, P. Kuppusamy, J. Mater. Chem. 16, 3609–3618 (2006)

    Article  Google Scholar 

  23. K. Halbach, Nucl. Instrum. Methods 169, 1–10 (1980)

    Article  ADS  Google Scholar 

  24. C.W. Windt, H. Soltner, Dv Dusschoten, P. Blümler, J. Magn. Reson. 208, 27–33 (2011)

    Article  ADS  Google Scholar 

  25. B.P. Hills, K.M. Wright, D.G. Gillies, J. Magn. Reson. 175, 336–339 (2005)

    Article  ADS  Google Scholar 

  26. H. Raich, P. Blümler, Concepts Magn. Reson. Part B. Magn. Reson. Eng. 23B, 16–25 (2004)

    Article  Google Scholar 

  27. W.H. Chang, J.H. Chen, L.P. Hwang, Magn. Reson. Imaging 24, 1095–1102 (2006)

    Article  Google Scholar 

  28. S. Anferova, V. Anferov, D.G. Rata, B. Blümich, J. Arnold, C. Clauser, P. Blümler, H. Raich, Concepts Magn. Reson. Part B. Magn. Reson. Eng. 23B, 26–32 (2004)

    Article  Google Scholar 

  29. G. Moresi, R. Magin, Concepts Magn. Reson. Part B. Magn. Reson. Eng. 19B, 35–43 (2003)

    Article  Google Scholar 

  30. C. Bauer, H. Raich, G. Jeschke, P. Blumler, J. Magn. Reson. 198, 222–227 (2009)

    Article  ADS  Google Scholar 

  31. A. Blank, C.R. Dunnam, P.P. Borbat, J.H. Freed, J. Magn. Reson. 165, 116–127 (2003)

    Article  ADS  Google Scholar 

  32. A. Blank, J.H. Freed, Isr. J. Chem. 46, 423–438 (2006)

    Article  Google Scholar 

  33. A. Blank, E. Suhovoy, R. Halevy, L. Shtirberg, W. Harneit, Phys. Chem. Chem. Phys. 11, 6689–6699 (2009)

    Article  Google Scholar 

  34. Y. Twig, E. Suhovoy, A. Blank, Rev. Sci. Instrum. 81, 104703 (2010)

    Article  ADS  Google Scholar 

  35. W. Helen, A. Rizwan, T. Ygal, W. Benjamin, B. Aharon, Health. Phys. (2014) (in press)

  36. F. Casanova, J. Perlo, in Single-Sided NMR, ed. by F. Casanova, J. Perlo, B. Blümich (Springer, Berlin Heidelberg, 2011), pp. 11–56

    Chapter  Google Scholar 

  37. R.P. Pandian, N.P. Raju, J.C. Gallucci, P.M. Woodward, A.J. Epstein, P. Kuppusamy, Chem. Mater. 22, 6254–6262 (2010)

    Article  Google Scholar 

  38. L. Shtirberg, Y. Twig, E. Dikarov, R. Halevy, M. Levit, A. Blank, Rev. Sci. Instrum. 82, 043708 (2011)

    Article  ADS  Google Scholar 

  39. C.P. Poole, Electron Spin Resonance : a Comprehensive Treatise on Experimental Techniques (Wiley, New York, 1983)

    Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the NIH (1R21 EB016189-01) and by grant no. 201665 from the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Blank.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfson, H., Ahmad, R., Twig, Y. et al. A Miniature Electron Spin Resonance Probehead for Transcutaneous Oxygen Monitoring. Appl Magn Reson 45, 955–967 (2014). https://doi.org/10.1007/s00723-014-0593-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0593-8

Keywords

Navigation