Skip to main content
Log in

Practical Aspects of Copper Ion-Based Double Electron Electron Resonance Distance Measurements

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We present experimental conditions that lead to high-quality Cu2+-based double electron electron resonance (DEER) data. Such experiments are feasible at temperature of about 20 K, and sample concentrations in the range of 0.15–1.5 mM. By systematically investigating the effects of pulse lengths, we find that observer π pulse lengths of 20–48 ns provide reasonable modulation depths as well as signals. The length of the pump pulse needs to be minimized (16 ns in our case). For a Cu2+–Cu2+ DEER measurement, the optimal frequency offset is about 100 MHz. For a Cu2+–nitroxide DEER measurement, the frequency offset is often varied in the range of 100–500 MHz, to probe orientational selectivity. For both cases, the frequency of the pump pulse should be smaller than the observer pulse in order to obtain a larger modulation depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.D. Milov, K.M. Salikhov, M.D. Shchirov, Fiz. Tverd. Tela (Leningrad) 23, 975–982 (1981)

    Google Scholar 

  2. R.G. Larson, D.J. Singel, J. Chem. Phys. 98, 5134–5146 (1993)

    Article  ADS  Google Scholar 

  3. C. Altenbach, S.L. Flitsch, H.G. Khorana, W.L. Hubbell, Biochemistry 28, 7806–7812 (1989)

    Article  Google Scholar 

  4. W.L. Hubbell, D.S. Cafiso, C. Altenbach, Nat. Struct. Biol. 7, 735–739 (2000)

    Article  Google Scholar 

  5. W.L. Hubbell, A. Gross, R. Langen, M. Lietzow, Curr. Opin. Struct. Biol. 8, 649–656 (1998)

    Article  Google Scholar 

  6. V.W. Cornish, D.R. Benson, C.A. Altenbach, K. Hideg, W. Hubbell, P. Schultz, Proc. Natl. Acad. Sci. USA 91, 2910–2914 (1994)

    Article  ADS  Google Scholar 

  7. Y.-W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 172, 279–295 (2005)

    Article  ADS  Google Scholar 

  8. G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473–498 (2006)

    Article  Google Scholar 

  9. C. Elsässer, M. Brecht, R. Bittl, J. Am. Chem. Soc. 124, 12606–12611 (2002)

    Article  Google Scholar 

  10. M. Bennati, J.H. Robblee, V. Mugnaini, J. Stubbe, J. Freed, P. Borbat, J. Am. Chem. Soc. 127, 15014–15015 (2005)

    Article  Google Scholar 

  11. A. Kawamori, T.-A. Ono, A. Ishii, S. Nakazawa, H. Hara, T. Tomo, J. Minagawa, R. Bittl, S.A. Dzuba, Photosynth. Res. 84, 187–192 (2005)

    Article  Google Scholar 

  12. A.V. Astashkin, J. Seravalli, S.O. Mansoorabadi, G.H. Reed, S.W. Ragsdale, J. Am. Chem. Soc. 128, 3888–3889 (2006)

    Article  Google Scholar 

  13. J.E. Banham, C.R. Timmel, R.J.M. Abbott, S.M. Lea, G. Jeschke, Angew. Chem. Int. Ed. 45, 1058–1061 (2006)

    Article  Google Scholar 

  14. P.G. Fajer, M. Gyimesi, A. Málnási-Csizmadia, C.R. Bagshaw, K.I. Sen, L. Song, J. Phys: Condens. Matter 19(285208), 1–10 (2007)

    Google Scholar 

  15. V.P. Denysenkov, D. Biglino, W. Lubitz, T.F. Prisner, M. Bennati, Angew. Chem. Int. Ed. 47, 1224–1227 (2008)

    Article  Google Scholar 

  16. J.C. Klein, A.R. Burr, B. Svensson, D.J. Kennedy, J. Allingham, M.A. Titus, I. Rayment, D.D. Thomas, Proc. Natl. Acad. Sci. USA 105, 12867–12872 (2008)

    Article  ADS  Google Scholar 

  17. M.A. Swanson, V. Kathirvelu, T. Majtan, F.E. Frerman, G.R. Eaton, S.S. Eaton, J. Am. Chem. Soc. 131, 15978–15979 (2009)

    Article  Google Scholar 

  18. J.L. Kear, M.E. Blackburn, A.M. Veloro, B.M. Dunn, G.E. Fanucci, J. Am. Chem. Soc. 131, 14650–14651 (2009)

    Article  Google Scholar 

  19. H. Ghimire, R.M. McCarrick, D.E. Budil, G.A. Lorigan, Biochemistry 48, 5782–5784 (2009)

    Article  Google Scholar 

  20. O. Schiemann, N. Piton, J. Plackmeyer, B.E. Bode, T.F. Prisner, J.W. Engels, Nat. Protoc. 2, 904–923 (2007)

    Article  Google Scholar 

  21. P.Z. Qin, I.S. Haworth, Q. Cai, A.K. Kusnetzow, G.P.G. Grant, E.A. Price, G.Z. Sowa, A. Popova, B. Herreros, H. He, Nat. Protoc. 2, 2354–2365 (2007)

    Article  Google Scholar 

  22. G. Sicoli, G. Mathis, O. Delalande, Y. Boulard, D. Gasparutto, S. Gambarelli, Angew. Chem. Int. Ed. 47, 735–737 (2008)

    Article  Google Scholar 

  23. N.A. Kuznetsov, A.D. Milov, V.V. Koval, R.I. Samoilova, Y.A. Grishin, D.G. Knorre, Y.D. Tsvetkov, O.S. Fedorova, S.A. Dzuba, Phys. Chem. Chem. Phys. 11, 6826–6832 (2009)

    Article  Google Scholar 

  24. A.D. Milov, A.G. Maryasov, Y.D. Tsvetkov, J. Raap, Chem. Phys. Lett. 303, 135–143 (1999)

    Article  ADS  Google Scholar 

  25. M. Pannier, M. Schöps, V. Schädler, U. Wiesner, G. Jeschke, H.W. Spiess, Macromolecules 34, 5555–5560 (2001)

    Article  ADS  Google Scholar 

  26. S. Pornsuwan, G. Bird, C.E. Schafmeister, S. Saxena, J. Am. Chem. Soc. 128, 3876–3877 (2006)

    Article  Google Scholar 

  27. B.E. Bode, D. Margraf, J. Plackmeyer, G. Dürner, T.F. Prisner, O. Schiemann, J. Am. Chem. Soc. 129, 6736–6745 (2007)

    Article  Google Scholar 

  28. J.E. Lovett, M. Hoffmann, A. Cnossen, A.T.J. Shutter, H.J. Hogben, J.E. Warren, S.I. Pascu, C.W.M. Kay, C.R. Timmel, H.L. Anderson, J. Am. Chem. Soc. 131, 13852–13859 (2009)

    Article  Google Scholar 

  29. M. Gordon-Grossman, Y. Gofman, H. Zimmermann, V. Frydman, Y. Shai, N. Ben-Tal, D. Goldfarb, J. Phys. Chem. B 113, 12687–12695 (2009)

    Article  Google Scholar 

  30. S.V. Gulla, G. Sharma, P. Borbat, J.H. Freed, H. Ghimire, M.R. Benedikt, N.L. Holt, G.A. Lorigan, K. Rege, C. Mavroidis, D.E. Budil, J. Am. Chem. Soc. 131, 5374–5375 (2009)

    Article  Google Scholar 

  31. S.-Y. Park, P.P. Borbat, G. Gonzalez-Bonet, J. Bhatnagar, A.M. Pollard, J.H. Freed, A.M. Bilwes, B.R. Crane, Nat. Struct. Biol. 13, 400–407 (2006)

    Article  Google Scholar 

  32. I.V. Borovykh, S. Ceola, P. Gajula, P. Gast, H.-J.r. Steinhoff, M. Huber, J. Magn. Reson. 180, 178–185 (2006)

    Article  ADS  Google Scholar 

  33. A.D. Milov, Y.D. Tsvetkov, E.Y. Gorbunova, L.G. Mustaeva, T.V. Ovchinnikova, J.-W. Handgraaf, J. Raap, Chem. Biodivers. 4, 1243–1255 (2007)

    Article  Google Scholar 

  34. M. Kim, Q. Xu, D. Murray, D.S. Cafiso, Biochemistry 47, 670–679 (2008)

    Article  Google Scholar 

  35. C. Altenbach, A.K. Kusnetzow, O.P. Ernst, K.P. Hofmann, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 105, 7439–7444 (2008)

    Article  ADS  Google Scholar 

  36. P. Zou, M. Bortolus, H.S. Mchaourab, J. Mol. Biol. 393, 586–597 (2009)

    Article  Google Scholar 

  37. S. Meyer, S. Böhme, A. Krüger, H.-J. Steinhoff, J.P. Klare, A. Wittinghofer, PLoS Biol 7, 1–15 (2009)

    Google Scholar 

  38. D.Z. Herrick, W. Kuo, H. Huang, C.D. Schwieters, J.F. Ellena, D.S. Cafiso, J. Mol. Biol. 390, 913–923 (2009)

    Article  Google Scholar 

  39. G. Hagelueken, W.J. Ingledew, H. Huang, B. Petrovic-Stojanovska, C. Whitfield, H. ElMkami, O. Schiemann, J.H. Naismith, Angew. Chem. Int. Ed. 48, 2904–2906 (2009)

    Article  Google Scholar 

  40. C. Dockter, A. Volkov, C. Bauer, Y. Polyhach, Z. Joly-Lopez, G. Jeschke, H. Paulsen, Proc. Natl. Acad. Sci. USA 106, 18485–18490 (2009)

    Article  Google Scholar 

  41. K.I. Sen, T.M. Logan, P.G. Fajer, Biochemistry 46, 11639–11649 (2007)

    Article  Google Scholar 

  42. K.M. Stone, J.E. Townsend, J. Sarver, P.J. Sapienza, S. Saxena, L. Jen-Jacobson, Angew. Chem. Int. Ed. 47, 10192–10194 (2008)

    Article  Google Scholar 

  43. I.M.C. vanAmsterdam, M. Ubbink, G.W. Canters, M. Huber, Angew. Chem. Intl. Ed. 42, 62–64 (2003)

    Article  Google Scholar 

  44. E. Narr, A. Godt, G. Jeschke, Angew. Chem. Intl. Ed. 41, 3907–3910 (2002)

    Article  Google Scholar 

  45. Z. Yang, J. Becker, S. Saxena, J. Magn. Reson. 188, 337–343 (2007)

    Article  ADS  Google Scholar 

  46. B.E. Bode, J. Plackmeyer, T.F. Prisner, O. Schiemann, J. Phys. Chem. A 112, 5064–5073 (2008)

    Article  Google Scholar 

  47. J.E. Lovett, A.M. Bowen, C.R. Timmel, M.W. Jones, J.R. Dilworth, D. Caprotti, S.G. Bell, L.L. Wong, J. Harmer, Phys. Chem. Chem. Phys. 11, 6840–6848 (2009)

    Article  Google Scholar 

  48. Z. Yang, D. Kise, S. Saxena, J. Phys. Chem. B 114, 6165–6174 (2010)

    Article  Google Scholar 

  49. S. Jun, J. Becker, M. Yonkunas, R. Coalson, S. Saxena, Biochemistry 45, 11666–11673 (2006)

    Article  Google Scholar 

  50. G. Jeschke, A. Bender, H. Paulsen, H. Zimmermann, A. Godt, J. Magn. Reson. 169, 1–12 (2004)

    Article  ADS  Google Scholar 

  51. G. Jeschke, Biological Magnetic Resonance, ed. by M.A. Hemminga, L.J. Berlier. ESR Spectroscopy in Membrane Biophysics, vol 27, (Springer, Berlin, 2007), pp. 18–47

  52. E. Aronoff-Spencer, C.S. Burns, N.I. Avdievich, G.J. Gerfen, J. Peisach, W.E. Antholine, H.L. Ball, F.E. Cohen, S.B. Prusiner, G.L. Millhauser, Biochemistry 39, 13760–13771 (2000)

    Article  Google Scholar 

  53. C.S. Burns, E. Aronoff-Spencer, C.M. Dunham, P. Lario, N.I. Avdievich, W.E. Antholine, M. Olmstead, A. Vrielink, G.J. Gerfen, J. Peisach, W.G. Scott, G.L. Millhauser, Biochemistry 41, 3991–4001 (2002)

    Article  Google Scholar 

  54. G.L. Millhauser, Acc. Chem. Res. 37, 79–85 (2004)

    Article  Google Scholar 

  55. G. Jeschke, Y. Polyhach, Phys. Chem. Chem. Phys. 9, 1895–1910 (2007)

    Article  Google Scholar 

  56. A.D. Milov, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 15, 107–143 (1998)

    Article  Google Scholar 

  57. K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, J. Magn. Reson. 42, 255–276 (1981)

    Google Scholar 

  58. A.D. Milov, A.B. Ponomarev, Y.D. Tsvetkov, Chem. Phys. Lett. 110, 67–72 (1984)

    Article  ADS  Google Scholar 

  59. D. Margraf, B.E. Bode, A. Marko, O. Schiemann, T.F. Prisner, Mol. Phys. 105, 2153–2160 (2008)

    Article  ADS  Google Scholar 

  60. C.W.M. Kay, H.E. Mkami, R. Cammack, R.W. Evans, J. Am. Chem. Soc. 129(16), 4868–4869 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by a National Science Foundation award (MCB 0842956).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Ji, M. & Saxena, S. Practical Aspects of Copper Ion-Based Double Electron Electron Resonance Distance Measurements. Appl Magn Reson 39, 487–500 (2010). https://doi.org/10.1007/s00723-010-0181-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-010-0181-5

Keywords

Navigation