Skip to main content
Log in

EPR, NMR, and Thermodynamic Evidences for Forced Nuclear Spin–Electron Spin Interactions in the Case of 1-Phenyl-2-Methylpropyl-1,1-Dimethyl-2-Nitroxide (TIPNO) Attached to Permethylated β-Cyclodextrin

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In a recent paper (Bardelang et al. in J Org Chem 71:7657–7667, 2006), the deep inclusion of the TIPNO (1-phenyl-2-methylpropyl-1,1-dimethylethyl-2-nitroxide) free radical attached to a permethylated β-cyclodextrin (TRIMEB) into its cavity was questioned. In the present paper it is shown that the results of X-band and W-band electron paramagnetic resonance (EPR) and 1H nuclear magnetic resonance (NMR) studies of the TIPNO–TRIMEB in the presence of competitors of complexation (1-adamantanol, methyl orange and 1-adamantylamine) are consistent with a situation where the nitroxide is capping the small cavity entrance. The inclusion of the incoming guest was proven by 1H NMR, whereas no changes in EPR spectra were noticed whatever the competitors’ concentrations. These observations are rationalized in terms of an equilibrium between a nitroxide-capped cyclodextrin (weak complex) and a non-self included form, both species involving competitors’ inclusion without significant EPR spectral changes. These results not only confirm our preliminary findings, but also point out to the peculiar role of the cyclodextrin methoxy crown of the primary rim stabilizing the appended guest by means of weak interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. W. Saenger, Angew. Chem. Int. Ed. Engl. 19, 344–362 (1980)

    Article  Google Scholar 

  2. J. Szejtli, Cyclodextrins and Their Inclusion Complexes (Akadémiai Kiadó, Budapest, 1982)

    Google Scholar 

  3. D. Duchene, New Trends in Cyclodextrins and Derivatives (Editions de Santé, Paris, 1991)

    Google Scholar 

  4. J. Szejtli, Chem. Rev. 98, 1743–1753 (1998)

    Article  Google Scholar 

  5. A.R. Hedges, Chem. Rev. 98, 2035–2044 (1998)

    Article  Google Scholar 

  6. S.A. Nepogodiev, F.J. Stoddart, Chem. Rev. 98, 1959–1976 (1998)

    Article  Google Scholar 

  7. A. Harada, Acc. Chem. Rev. 34, 456–464 (2001)

    Article  Google Scholar 

  8. K. Uekama, F. Hirayama, T. Irie, Chem. Rev. 98, 2045–2076 (1998)

    Article  Google Scholar 

  9. M.J. Frampton, H.L. Anderson, Angew. Chem. Int. Ed. 46, 1028–1064 (2007)

    Article  Google Scholar 

  10. F. Hapiot, S. Tilloy, E. Monflier, Chem. Rev. 106, 767–781 (2006)

    Article  Google Scholar 

  11. E. Engeldinger, D. Armspach, D. Matt, Chem. Rev. 103, 4147–4173 (2003)

    Article  Google Scholar 

  12. P. Franchi, M. Lucarini, G.-F. Pedulli, Curr. Org. Chem. 8, 1–19 (2004)

    Article  Google Scholar 

  13. R.M. Paton, E.T. Kaiser, J. Am. Chem. Soc. 92, 4723–4725 (1970)

    Article  Google Scholar 

  14. G. Ionita, V. Chechik, Org. Biomol. Chem. 3, 3096–3098 (2005)

    Article  Google Scholar 

  15. G. Ionita, V. Meltzer, E. Pincu, V. Chechik, Org. Biomol. Chem. 5, 1910–1914 (2007)

    Article  Google Scholar 

  16. D. Bardelang, A. Rockenbauer, L. Jicsinszky, J.-P. Finet, H. Karoui, S. Lambert, S.R.A. Marque, P. Tordo, J. Org. Chem. 71, 7657–7667 (2006)

    Article  Google Scholar 

  17. P. Franchi, M. Fani, E. Mezzina, M. Lucarini, Org. Lett. 10, 1901–1904 (2008)

    Article  Google Scholar 

  18. D. Bardelang, J.-P. Finet, L. Jicsinszky, H. Karoui, S.R.A. Marque, A. Rockenbauer, R. Rosas, L. Charles, V. Monnier, P. Tordo, Chem. Eur. J. 13, 9344–9354 (2007)

    Article  Google Scholar 

  19. K. Mobius, A. Savitsky, A. Schnegg, M. Plato, M. Fuchs, Phys. Chem. Chem. Phys. 7, 19–42 (2005)

    Article  Google Scholar 

  20. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  21. M.V. Rekharsky, Y. Inoue, Chem. Rev. 98, 1875–1917 (1998)

    Article  Google Scholar 

  22. B. Balan, D.L. Sivadas, R. Gopidas, Org. Lett. 9, 2709–2712 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

P.T., H.K., J.P.F., S.C. B.D. A.R. and S.R.A.M. are grateful to cost P15 (grant: COST-STSM-P15-022268) for funding, the program ECONET (grant: 16321 WD) and the Conseil Re´gional Provence Alpes Côte, d’Azur, the Centre National de la Recherche Scientifique (CNRS), the Université de Provence and TROPHOS Company. K.M. and A.S. acknowledge support by the Deutschen Forschungsgemeinschaft (DFG) MO 132/19-2. E.G.B. and D.N.P. acknowledge support of the Russian Foundation for Basic Research RFBR (grant 08-04-0555), RFBR–DFG (09-03-91335) and Russian Federal Agency for Education (grant P1144).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena G. Bagryanskaya or Sylvain R. A. Marque.

Additional information

Dr. J.-P. Finet deceased during the preparation of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagryanskaya, E.G., Bardelang, D., Chenesseau, S. et al. EPR, NMR, and Thermodynamic Evidences for Forced Nuclear Spin–Electron Spin Interactions in the Case of 1-Phenyl-2-Methylpropyl-1,1-Dimethyl-2-Nitroxide (TIPNO) Attached to Permethylated β-Cyclodextrin. Appl Magn Reson 36, 181–194 (2009). https://doi.org/10.1007/s00723-009-0036-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0036-0

Keywords

Navigation