Skip to main content
Log in

Direct numerical simulations of turbulent pipe flow laden with finite-size neutrally buoyant particles at low flow Reynolds number

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, turbulent pipe flows laden with finite-size particles are investigated, using the direct numerical simulations based on the lattice Boltzmann method. Our focus is on the modulation of turbulence statistics in the pipe due to the presence of finite-size neutrally buoyant particles, and the question if the characteristics of modulation differ from those in a turbulent channel flow under comparable system parameters in order to reveal the effect of curved walls in the pipe. The mechanisms responsible for modulations of the turbulent intensity in the pipe flow are clarified through a quantitative budget analysis of the turbulent kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111 (2010)

    Article  MATH  Google Scholar 

  2. Gore, R.A., Crowe, C.T.: Effect of particle size on modulating turbulent intensity. Int. J. Multiph. Flow 15(2), 279 (1989)

    Article  Google Scholar 

  3. Gore, R.A., Crowe, C.T.: Modulation of turbulence by a dispersed phase. J. Fluids Eng. 113(2), 304 (1991)

    Article  Google Scholar 

  4. Kulick, J.D., Fessler, J.R., Eaton, J.K.: Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109 (1994)

    Article  Google Scholar 

  5. Paris, A.D.: Turbulence attenuation in a particle-laden channel flow. Ph.d. dissertation, Stanford University (2001)

  6. Kussin, J., Sommerfeld, M.: Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids 33(1), 143 (2002)

    Article  Google Scholar 

  7. Tanaka, T., Eaton, J.K.: Classification of turbulence modification by dispersed spheres using a novel dimensionless number. Phys. Rev. Lett. 101(11), 114502 (2008)

    Article  Google Scholar 

  8. Bellani, G., Byron, M.L., Collignon, A.G., Meyer, C.R., Variano, E.A.: Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J. Fluid Mech. 712, 41 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eaton, J.K.: Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Int. J. Multiph. Flow 35(9), 792 (2009)

    Article  Google Scholar 

  10. Tanaka, T., Eaton, J.K.: Sub-Kolmogorov resolution partical image velocimetry measurements of particle-laden forced turbulence. J. Fluid Mech. 643, 177 (2010)

    Article  MATH  Google Scholar 

  11. Prosperetti, A.: Life and death by boundary conditions. J. Fluid Mech. 768, 1 (2015)

    Article  MathSciNet  Google Scholar 

  12. Lucci, F., Ferrante, A., Elghobashi, S.: Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 5 (2010)

    Article  MATH  Google Scholar 

  13. Gao, H., Li, H., Wang, L.P.: Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Math. Appl. 65(2), 194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ten Cate, A., Derksen, J.J., Portela, L.M., Van Den Akker, H.E.: Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233 (2004)

    Article  MATH  Google Scholar 

  15. Vreman, A.W.: Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres. J. Fluid Mech. 796, 40 (2016)

    Article  MathSciNet  Google Scholar 

  16. Shao, X., Wu, T., Yu, Z.: Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Picano, F., Breugem, W.P., Brandt, L.: Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463 (2015)

    Article  MathSciNet  Google Scholar 

  18. Maxey, M.: Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 49, 171 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, H.H., Patankar, N.A., Zhu, M.: Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169(2), 427 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Burton, T.M., Eaton, J.K.: Fully resolved simulations of particle–turbulence interaction. J. Fluid Mech. 545, 67 (2005)

    Article  MATH  Google Scholar 

  21. Zeng, L., Balachandar, S., Fischer, P., Najjar, F.: Interactions of a stationary finite-sized particle with wall turbulence. J. Fluid Mech. 594, 271 (2008)

    Article  MATH  Google Scholar 

  22. Zhang, Z., Prosperetti, A.: A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210(1), 292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sierakowski, A.J., Prosperetti, A.: Resolved-particle simulation by the Physalis method: enhancements and new capabilities. J. Comput. Phys. 309, 164 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Botto, L., Prosperetti, A.: A fully resolved numerical simulation of turbulent flow past one or several spherical particles. Phys. Fluids 24(1), 013303 (2012)

    Article  Google Scholar 

  25. Uhlmann, M.: Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20(5), 053305 (2008)

    Article  MATH  Google Scholar 

  26. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Breugem, W.P.: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231(13), 4469 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D.: A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 25(5), 755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, Z., Shao, X.: A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227(1), 292 (2007)

    Article  MATH  Google Scholar 

  30. Wu, T.H., Shao, X.M., Yu, Z.S.: Fully resolved numerical simulation of turbulent pipe flows laden with large neutrally-buoyant particles. J. Hydrodyn. Ser. B 23(1), 21 (2011)

    Article  Google Scholar 

  31. Wang, L.P., Ayala, O., Gao, H., Andersen, C., Mathews, K.L.: Study of forced turbulence and its modulation by finite-size solid particles using the lattice Boltzmann approach. Comput. Math. Appl. 67(2), 363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, L.P., Peng, C., Guo, Z., Yu, Z.: Lattice Boltzmann simulation of particle-laden turbulent channel flow. Comput. Fluids 124, 226 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Eshghinejadfard, A., Abdelsamie, A., Hosseini, S.A., Thévenin, D.: Immersed boundary lattice Boltzmann simulation of turbulent channel flows in the presence of spherical particles. Int. J. Multiph. Flow 96, 161 (2017)

    Article  MathSciNet  Google Scholar 

  34. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271(1), 285 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Aidun, C.K., Lu, Y., Ding, E.J.: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287 (1998)

    Article  MATH  Google Scholar 

  38. Huffman, G.D., Bradshaw, P.: A note on von Karman’s constant in low Reynolds number turbulent flows. J. Fluid Mech. 53, 45 (1972)

    Article  Google Scholar 

  39. Loulou, P., Moser, R.D., Mansour, N.N.: Direct numerical simulation of incompressible pipe flow using a B-spline spectral method. NASA Tech. Memo. No. 110436, 1997 (1997)

    Google Scholar 

  40. Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81 (2008)

    Article  MATH  Google Scholar 

  41. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133 (1987)

    Article  MATH  Google Scholar 

  42. Pope, S.B.: Turbulent Flows. IOP Publishing, Bristol (2001)

    MATH  Google Scholar 

  43. Chin, C., Ooi, A.S.H., Marusic, I.: The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys. Fluids 22, 115107 (2010)

    Article  Google Scholar 

  44. Xu, Y., Subramaniam, S.: Effect of particle clusters on carrier flow turbulence: a direct numerical simulation study. Flow Turbul. Combust. 85(3), 735 (2010)

    Article  MATH  Google Scholar 

  45. White, A.T., Chong, C.K.: Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230, 6367 (2011)

    Article  MATH  Google Scholar 

  46. Kang, S.K., Hassan, Y.A.: The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. J. Comput. Phys. 232, 100 (2013)

    Article  MathSciNet  Google Scholar 

  47. Peng, C., Geneva, N., Guo, Z., Wang, L.P.: Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method. J. Comput. Phys. 357, 16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. d’Humières, D., Ginzburg, I., Krafczyk, M.: Multiple-relaxation-time lattice Boltzmann models in three-dimensions. Philos. Trans. R. Soc. A 360, 437 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Suga, K., Kuwata, Y., Takashima, K.: A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Comput. Math. Appl. 69, 518 (2015)

    Article  MathSciNet  Google Scholar 

  50. Junk, M., Klar, A., Luo, L.S.: Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys. 210, 676 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Dellar, P.J.: Bulk and shear viscosities in lattice Boltzmann equations. Phys. Rev. E 64(3), 031203 (2001)

    Article  Google Scholar 

  52. Feng, Z.G., Michaelides, E.E.: Proteus: a direct forcing method in the simulations of particulate flows. J. Comput. Phys. 202(1), 20 (2005)

    Article  MATH  Google Scholar 

  53. Kang, S.K., Hassan, Y.A.: A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries. Int. J. Numer. Methods Fluids 66(9), 1132 (2011)

    Article  MATH  Google Scholar 

  54. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452 (2001)

    Article  MATH  Google Scholar 

  55. Yu, D., Mei, R., Luo, L.S., Shyy, W.: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39(5), 329 (2003)

    Article  Google Scholar 

  56. Zhao, W., Yong, W.A.: Single-node second-order boundary schemes for the lattice Boltzmann method. J. Comput. Phys. 329(6), 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Peng, Y., Luo, L.S.: A comparative study of immersed-boundary and interpolated bounce-back methods in LBE. Prog. Comput. Fluid Dyn. Int. J. 8(1–4), 156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Chen, L., Yu, Y., Lu, J., Hou, G.: A comparative study of lattice Boltzmann methods using bounce-back schemes and immersed boundary ones for flow acoustic problems. Int. J. Numer. Methods Fluids 74(6), 439 (2014)

    Article  MathSciNet  Google Scholar 

  59. Mei, R., Yu, D., Shyy, W., Luo, L.S.: Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. E 65(4), 041203 (2002)

    Article  Google Scholar 

  60. Wen, B., Zhang, C., Tu, Y., Wang, C., Fang, H.: Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations. J. Comput. Phys. 266, 161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Peng, C., Teng, Y., Hwang, B., Guo, Z., Wang, L.P.: Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Comput. Math. Appl. 72(2), 349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. Tao, S., Hu, J., Guo, Z.: An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows. Comput. Fluids 133, 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Caiazzo, A.: Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn. Int. J. 8(1–4), 3 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Brändle de Motta, J.C., Breugem, W.P., Gazanion, B., Estivalezes, J.L., Vincent, S., Climent, E.: Numerical modelling of finite-size particle collisions in a viscous fluid. Phys. Fluids 25(8), 083302 (2013)

    Article  Google Scholar 

  65. Peng, C.: Study of turbulence modulation by finite-size solid particles with the lattice Boltzmann method. Ph.D. dissertation, the University of Delaware (2018)

  66. El Khoury, G.K., Schlatter, P., Noorani, A., Fischer, P.F., Brethouwer, G., Johansson, A.V.: Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust. 91(3), 475 (2013)

    Article  Google Scholar 

  67. Wagner, C., Huttl, T.J., Friedrich, R.: Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comput. Fluids 30, 581 (2001)

    Article  MATH  Google Scholar 

  68. Luchini, P.: Universality of the turbulent velocity profile. Phys. Rev. Lett. 118(22), 224501 (2017)

    Article  Google Scholar 

  69. Costa, P., Picano, F., Brandt, L., Breugem, W.P.: Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett. 117(13), 134501 (2016)

    Article  Google Scholar 

  70. Hall, D.: Measurements of the mean force on a particle near a boundary in turbulent flow. J. Fluid Mech. 187, 451 (1988)

    Article  Google Scholar 

  71. Saffman, P.: The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22(2), 385 (1965)

    Article  MATH  Google Scholar 

  72. Segré, G., Silberberg, A.: Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J. Fluid Mech. 14(1), 136 (1962)

    Article  MATH  Google Scholar 

  73. Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

Download references

Acknowledgements

This work has been supported by the U.S. National Science Foundation (NSF) under grants CNS1513031 and CBET-1706130, and by the Southern University of Science and Technology, China. Computing resources are provided by National Center for Atmospheric Research through CISL-P35751014, and CISL-UDEL0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Wang, LP. Direct numerical simulations of turbulent pipe flow laden with finite-size neutrally buoyant particles at low flow Reynolds number. Acta Mech 230, 517–539 (2019). https://doi.org/10.1007/s00707-018-2268-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2268-2

Navigation