Skip to main content
Log in

Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We study the extension of a piezoelectric semiconductor fiber with consideration of the electrical nonlinearity due to the drift current which is the product of the unknown electric field and the unknown carrier concentration. The analysis is based on a one-dimensional model. A perturbation analysis is performed. The first-order solution is the linear solution known in the literature. The second- and third-order nonlinear solutions obtained in this paper are new. Numerical results show that when the axial load is small the linear and nonlinear solutions are essentially the same. As the axial load increases, the linear and nonlinear solutions gradually become more different. The nonlinear solution is valid for a larger range of load and establishes the range of applicability of the linear solution. It is also found that while the electromechanical fields predicted by the linear solution are either symmetric or antisymmetric about the middle of the rod, the fields described by the nonlinear solutions lose this symmetry and antisymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hickernell, F.S.: The piezoelectric semiconductor and acoustoelectronic device development in the sixties. In: Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, Tampa, USA, pp. 1012–1020 (2003)

  2. Wang, Z.L.: Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices. Adv. Mater. 15, 432–436 (2003)

    Article  Google Scholar 

  3. Wang, Z.L.: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)

    Article  Google Scholar 

  4. Kumar, B., Kim, S.W.: Recent advances in power generation through piezoelectric nanogenerators. J. Mater. Chem. 21, 18946–18958 (2011)

    Article  Google Scholar 

  5. Lee, K.Y., Kumar, B., Seo, J.S., Kim, K.H., Sohn, J.I., Cha, S.N., Choi, D., Wang, Z.L., Kim, S.W.: P-type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Lett. 12, 1959–1964 (2012)

    Article  Google Scholar 

  6. Lee, K.Y., Bae, J., Kim, S.M., Lee, J.H., Yoon, G.C., Gupta, M.K., Kim, S.J., Kim, H., Park, J.J., Kim, S.W.: Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators. Nano Energy 8, 165–173 (2014)

    Article  Google Scholar 

  7. Gao, Y.F., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)

    Article  Google Scholar 

  8. Hu, Y.F., Chang, Y.L., Fei, P., Snyder, R.L., Wang, Z.L.: Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4, 1234–1240 (2010)

    Article  Google Scholar 

  9. Araneo, R., Lovat, G., Burghignoli, P., Falconi, C.: Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv. Mater. 24, 4719–4724 (2012)

    Article  Google Scholar 

  10. Ji, J.L., Zhou, Z.Y., Yang, X., Zhang, W.D., Sang, S.B., Li, P.W.: One-dimensional nano-interconnection formation. Small 9, 3014–3029 (2013)

    Article  Google Scholar 

  11. Shen, Y., Hong, J., Xu, S., Lin, S.S., Fang, H., Zhang, S., Ding, Y., Snyder, R.L., Wang, Z.L.: A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition. Adv. Funct. Mater. 20, 703–707 (2010)

    Article  Google Scholar 

  12. Chen, T.T., Cheng, C.L., Fu, S.P., Chen, Y.F.: Photoelastic effect in ZnO nanorods. Nanotechnology 18, 225705 (2007)

    Article  Google Scholar 

  13. Yoo, J., Lee, C.H., Doh, Y.J., Jung, H.S., Yi, G.C.: Modulation doping in ZnO nanorods for electrical nanodevice applications. Appl. Phys. Lett. 94, 223117 (2009)

    Article  Google Scholar 

  14. Xue, H.Z., Pan, N., Li, M., Wu, Y.K., Wang, X.P., Hou, J.G.: Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence. Nanotechnology 21, 215701 (2010)

    Article  Google Scholar 

  15. Gao, P.X., Song, J.H., Liu, J., Wang, Z.L.: Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19, 67–72 (2007)

    Article  Google Scholar 

  16. Choi, M.Y., Choi, D., Jin, M.J., Kim, I., Kim, S.H., Choi, J.Y., Lee, S.Y., Kim, J.M., Kim, S.W.: Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21, 2185–2189 (2009)

    Article  Google Scholar 

  17. Romano, G., Mantini, G., Garlo, A.D., D’Amico, A., Falconi, C., Wang, Z.L.: Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology 22, 465401 (2011)

    Article  Google Scholar 

  18. Asthana, A., Ardakani, H.A., Yap, Y.K., Yassar, R.S.: Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts. J. Mater. Chem. C 2, 3995–4004 (2014)

    Article  Google Scholar 

  19. Liao, Q.L., Zhang, Z., Zhang, X.H., Mohr, M., Zhang, Y., Fecht, H.J.: Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 7, 917–928 (2014)

    Article  Google Scholar 

  20. Wang, X.D., Zhou, J., Song, J.H., Liu, J., Xu, N.S., Wang, Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006)

    Article  Google Scholar 

  21. Buyukkose, S., Hernandez-Minguez, A., Vratzov, B., Somaschini, C., Geelhaar, L., Riechert, H., van der Wiel, W.G., Santos, P.V.: High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology 25, 135204 (2014)

    Article  Google Scholar 

  22. Yu, J., Ippolito, S.J., Wlodarski, W., Strano, M., Kalantar-Zadeh, K.: Nanorod based Schottky contact gas sensors in reversed bias condition. Nanotechnology 21, 265502 (2010)

    Article  Google Scholar 

  23. Hutson, A.R., White, D.L.: Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33, 40–47 (1962)

    Article  Google Scholar 

  24. Auld, B.A.: Acoustic Fields and Waves in Solids. Wiley, New York (1973)

    Google Scholar 

  25. Pierret, R.F.: Semiconductor Fundamentals, 2nd edn. Addison-Wesley, Reading (1988)

    Google Scholar 

  26. Wauer, J., Suherman, S.: Thickness vibrations of a piezo-semiconducting plate layer. Int. J. Eng. Sci. 35, 1387–1404 (1997)

    Article  Google Scholar 

  27. Li, P., Jin, F., Yang, J.S.: Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Mater. Struct. 24, 025021 (2015)

    Article  Google Scholar 

  28. Collet, B.: Acoustic wave propagation in cubic piezoelectric semiconductor plates. J. Acoust. Soc. Am. 123, 3694 (2008)

    Article  Google Scholar 

  29. Gu, C.L., Jin, F.: Shear-horizontal surface waves in a half-space of piezoelectric semiconductors. Phil. Mag. Lett. 95, 92–100 (2015)

    Article  Google Scholar 

  30. Zhang, J., Hu, Y.T.: Analysis on the anti-plane deformations of a piezoelectric semiconductor plate with a hole. In: Proceeding of the 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Beijing, china, pp. 106–109 (2014)

  31. Yang, J.S., Song, Y.C., Soh, A.K.: Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate. Arch. Appl. Mech. 76, 381–390 (2006)

    Article  Google Scholar 

  32. Yang, J.S.: An anti-plane crack in a piezoelectric semiconductor. Int. J. Fract. 136, L27–32 (2005)

    Article  Google Scholar 

  33. Hu, Y.T., Zeng, Y., Yang, J.S.: A Mode III crack in a piezoelectric semiconductor of crystals with 6mm symmetry. Int. J. Solids Struct. 44, 3928–3938 (2007)

    Article  Google Scholar 

  34. Sladek, J., Sladek, V., Pan, E., Young, D.L.: Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. CMES-Comput. Model. Eng. 99, 273–296 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Sladek, J., Sladek, V., Pan, E., Münsche, M.: Fracture analysis in piezoelectric semiconductors under a thermal load. Eng. Fract. Mech. 126, 27–39 (2014)

    Article  Google Scholar 

  36. Zhao, M.H., Pan, Y.B., Fan, C.Y., Xu, G.T.: Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. Int. J. Solids Struct. 94, 50–59 (2016)

    Article  Google Scholar 

  37. Fan, C.Y., Yan, Y., Xu, G.T., Zhao, M.H.: Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method. Eng. Fract. Mech. 165, 183–196 (2016)

    Article  Google Scholar 

  38. Zhao, M.H., Li, Y., Yan, Y., Fan, C.Y.: Singularity analysis of planar cracks in three-dimensional piezoelectric semiconductors via extended displacement discontinuity boundary integral equation method. Eng. Anal. Bound. Elem. 67, 115–125 (2016)

    Article  MathSciNet  Google Scholar 

  39. Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. J. Zhejiang Univ. Sci. A 17, 37–44 (2016)

    Article  Google Scholar 

  40. Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: Propagation of extensional waves in a piezoelectric semiconductor rod. AIP Adv. 6, 045301 (2016)

    Article  Google Scholar 

  41. Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Mater. Struct. 26, 025030 (2017)

    Article  Google Scholar 

  42. Zhang, C.L., Luo, Y.X., Cheng, R.R., Wang, X.Y.: Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Adv. 2, 3421–3426 (2017)

    Article  Google Scholar 

  43. Gao, Y.F., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007)

    Article  Google Scholar 

  44. Fan, S.Q., Liang, Y.X., Xie, J.M., Hu, Y.T.: Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: part I-linearized analysis. Nano Energy 40, 82–87 (2017)

    Article  Google Scholar 

  45. Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: Bending of a cantilever piezoelectric semiconductor fiber under an end force. In: Altenbach H., Pouget J., Rousseau M., Collet B., Michelitsch T. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, pp. 261–278. Springer, Cham (2018)

    Google Scholar 

  46. Dai, X.Y., Zhu, F., Qian, Z.H., Yang, J.S.: Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy 43, 22–28 (2018)

    Article  Google Scholar 

  47. Luo, Y.X., Zhang, C.L., Chen, W.Q., Yang, J.S.: An analysis of PN junctions in piezoelectric semiconductors. J. Appl. Phys. 122, 204502 (2017)

    Article  Google Scholar 

  48. Yang, G.Y., Du, J.K., Wang, J., Yang, J.S.: Electromechanical fields in a nonuniform piezoelectric semiconductor rod. J. Mech. Mater. Struct. 13, 103–120 (2018)

    Article  MathSciNet  Google Scholar 

  49. Yang, J.S., Zhou, H.G.: Amplification of acoustic waves in piezoelectric semiconductor plates. Int. J. Solids Struct. 42, 3171–3183 (2005)

    Article  Google Scholar 

  50. Yang, J.S., Yang, X.M., Turner, J.A.: Amplification of acoustic waves in piezoelectric semiconductor shells. J. Intell. Mater. Syst. Struct. 16, 613–621 (2005)

    Article  Google Scholar 

  51. Li, P., Jin, F., Ma, J.X.: One-dimensional dynamic equations of a piezoelectric semiconductor beam with a rectangular cross section and their application in static and dynamic characteristic analysis. Appl. Math. Mech. Engl. 5, 685–702 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianke Du or Jiashi Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Du, J., Wang, J. et al. Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mech 229, 4663–4676 (2018). https://doi.org/10.1007/s00707-018-2216-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2216-1

Navigation