Skip to main content
Log in

The frequency-dependent behavior of a ferroelectric single crystal with dislocation arrays

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Phase field simulations are conducted to investigate the frequency-dependent behavior of a ferroelectric single crystal with and without dislocation arrays. For the dislocation-free ferroelectric, both coercive field and remnant polarization increase with the increase in the applied electric field frequency. For the ferroelectric with dislocation arrays, however, the variation of remnant polarization with frequency depends on the amplitude of the applied alternating electric field. When the applied electric amplitude ranges from 0.3 to 0.7, called the low field, the remnant polarization increases first and then decreases. On the other hand, if the applied field amplitude is higher than 0.8, the remnant polarization does not change too much at low frequency (3.13 × 10−4–1.56 × 10−2), while it decreases sharply at high frequency (1.56 × 10−2–0.156). For various applied electric amplitudes ranging from 0.3 to 1.5, the overall trend of the coercive field is to increase in the low-frequency range, while it varies in the high-frequency range. The frequency-dependent properties are attributed to the generalized pinning and depinning of the dislocation arrays to polarizations, which is endorsed by the corresponding domain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scott J.F., Araujo C.A.P.: Ferroelectric memories. Science 246, 1400–1405 (1989)

    Article  Google Scholar 

  2. Garcia V., Bibes M.: Electronics: inside story of ferroelectric memories. Nature 483, 279–281 (2012)

    Article  Google Scholar 

  3. Bozgeyik M.S.: Frequency dependent ferroelectric properties of BaZrO3 modified Sr0.8Bi2.2Ta2O9 thin films. Chin. J. Phys. 51, 327–336 (2013)

    Google Scholar 

  4. Horiuchi S., Kagawa F., Hatahara K., Kobayashi K., Kumai R., Murakami Y., Tokura Y.: Above-room-temperature ferroelectricity and anti-ferroelectricity in benzimidazoles. Nat. Commun. 3, 1308 (2012)

    Article  Google Scholar 

  5. Yang S.M., Jo J.Y., Kim T.H., Yoon J-G., Song T.K., Lee H.N., Marton Z., Park S., Jo Y., Noh T.W.: AC dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops. Phys. Rev. B 82, 174125 (2010)

    Article  Google Scholar 

  6. Hu W.J., Juo D.-M., You L., Wang J., Chen Y.-C., Chu Y.-H., Wu T.: Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films. Sci. Rep. 4, 4772 (2014)

    Article  Google Scholar 

  7. Chaipanich A., Potong R., Rianyoi R., Jareansuk L., Jaitanong N., Yimnirun R.: Dielectric and ferroelectric hysteresis properties of 1–3 lead magnesium niobate–lead titanate ceramic/Portland cement composites. Ceram. Int. 38, S255–S258 (2012)

    Article  Google Scholar 

  8. Tang M.H., Dong G.J., Sugiyama Y., Ishiwara H.: Frequency-dependent electrical properties in Bi(Zn0.5Ti0.5)O3 doped Pb(Zr0.4Ti0.6)O3 thin film for ferroelectric memory application. Semicond. Sci. Technol. 25, 035006 (2010)

    Article  Google Scholar 

  9. Ortega N., Kumar A., Scott J.F., Chrisey D.B., Tomazawa M., Kumari S., Diestra D.G.B., Katiyar R.S.: Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys. Condens. Matter. 24, 445901 (2012)

    Article  Google Scholar 

  10. Chand P., Gaur A., Kumar A.: Study of optical and ferroelectric behavior of ZnO nanostructures. Adv. Mater. Lett. 4, 220 (2013)

    Article  Google Scholar 

  11. Knauss L.A., Pattnaik R., Toulouse J.: Polarization dynamics in the mixed ferroelectric KTa1−xNbxO3. Phys. Rev. B 55, 3472–3479 (1997)

    Article  Google Scholar 

  12. Picinin A., Lente M.H., Eiras J.A., Rino J.P.: Theoretical and experimental investigations of polarization switching in ferroelectric materials. Phys. Rev. B 69, 064117 (2004)

    Article  Google Scholar 

  13. Morozovska A.N., Eliseev E.A., Remiens D., Soyer C.: Theoretical description of ferroelectric and pyroelectric hystereses in the disordered ferroelectric-semiconductor films. J. Appl. Phys. 100, 014109 (2006)

    Article  Google Scholar 

  14. Liu J.M., Li Q.C., Wang W.M., Chen X.Y., Cao G.H., Liu X.H., Liu Z.G.: Scaling of dynamic hysteresis in ferroelectric spin systems. J. Phys. Condens. Matter. 13, L153–L161 (2001)

    Article  Google Scholar 

  15. Zheng X.-J., Lu J., Zhou Y.-C., Wu B., Chen Y.-Q.: Evolution of domain structure and frequency effect on ferroelectric properties in BIT ferroelectrics. Trans. Nonferrous Met. Soc. China 17, s64–s68 (2007)

    Article  Google Scholar 

  16. Sivasubramanian S., Widom A., Srivastava Y.: Equivalent circuit and simulations for the Landau–Khalatnikov model of ferroelectric hysteresis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 950–957 (2003)

    Article  Google Scholar 

  17. Wu H.H., Wang J., Cao S.G., Zhang T.Y.: Effect of dislocation walls on the polarization switching of a ferroelectric single crystal. Appl. Phys. Lett. 102, 232904 (2013)

    Article  Google Scholar 

  18. Wu H.H., Wang J., Cao S.G., Chen L.Q., Zhang T.Y.: Micro-/macro-responses of a ferroelectric single crystal with domain pinning and depinning by dislocations. J. Appl. Phys. 114, 164108 (2013)

    Article  Google Scholar 

  19. Wu H.H., Wang J., Cao S.G., Chen L.Q., Zhang T.Y.: The unusual temperature dependence of the switching behavior in a ferroelectric single crystal with dislocations. Smart Mater. Struct. 23, 025004 (2014)

    Article  Google Scholar 

  20. Wang J., Shi S.Q., Chen L.Q., Li Y., Zhang T.Y.: Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater. 52, 749–764 (2004)

    Article  Google Scholar 

  21. Liu J.M., Yu L.C., Yuan G.L., Yang Y., Chan H.L.W., Liu Z.G.: Dynamic hysteresis of ferroelectric Pb(Zr0.52Ti0.48O3 thin films. Microelectron. Eng. 66, 798–805 (2003)

    Article  Google Scholar 

  22. Sarjala M., Seppälä E.T., Alava M.J.: Dynamic hysteresis in ferroelectrics with quenched randomness. Phys. B 403, 418–421 (2008)

    Article  Google Scholar 

  23. Liu J.M., Xiao Q., Liu Z.G., Chan H.L.W., Ming N.B.: Dynamic hysteresis stability of ferroelectric Pb(Zr0.52Ti0.48)O3 thin films. Mater. Chem. Phys. 82, 733–741 (2003)

    Article  Google Scholar 

  24. Yu G., Chen X., Cao F., Wang G., Dong X.: Dynamic ferroelectric hysteresis scaling behavior of 40BiScO3–60PbTiO3 bulk ceramics. Solid State Commun. 150, 1045–1047 (2010)

    Article  Google Scholar 

  25. Chen D.P., Liu J.M.: Dynamic hysteresis of tetragonal ferroelectrics: the resonance of 90°-domain switching. Appl. Phys. Lett. 100, 062904 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H.H., Cao, S.G., Zhu, J.M. et al. The frequency-dependent behavior of a ferroelectric single crystal with dislocation arrays. Acta Mech 228, 2811–2817 (2017). https://doi.org/10.1007/s00707-015-1512-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1512-2

Keywords

Navigation