Skip to main content
Log in

Fiberwalk: a random walk approach to fiber representative volume element creation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Attaining accurate representative geometry for a finite element analysis at various scales can be a challenging research task. Added complications arise when the geometry is representing a manufactured or biological composite. In this study, a representative geometry of linear fibrous composites was created at the microscale and is employed to reproduce crystalline microfibril stacking of Kevlar to form a single fibril joined by a non-ordered crystal structure. The structure can have ellipsoidal or rectangular microfibrils stacked in ellipsoidal or rectangular fibrils and may have any desired packing ratio within the 1–100% range. In order to build a fibrous structure along a path, a Random Walk methodology was used. Since the directionality of the fibers is random, but always stepping from one side of the path toward the other, the fibers can wind around each other and tangle or terminate if needed. Another key concept of this method is the addition of a rotation matrix operation for the path of the fibers. This allows the path around the three local coordinates to be in a linear or sinusoidal direction. The resultant geometry produced can represent the tortuous path nanofibrils undergo. Moreover, rotation about the path axis allows for the twisted geometry of ring spun yarn, and metal cable to be reproduced. Inclusion of spherical objects to the path of the fibers has been accommodated to reproduce fiber projection around, or end at, an obstruction in their path. This approach allows representing impurities at the fibril, fiber, or yarn level of composite fabric manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iorga L., Pan Y., Pelegri A.A.: Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption. Comput. Mater. Sci. 43(3), 450–461 (2008)

    Article  Google Scholar 

  2. Feng X.-Q., Qin Q.-H., Yu S.-W.: Quasi-micromechanical damage model for brittle solids with interacting microcracks. Mech. Mater. 36, 261–273 (2004)

    Article  Google Scholar 

  3. Hollister S.J., Kikuchi N.: A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput. Mech. 10, 73–95 (1992)

    Article  MATH  Google Scholar 

  4. Liu Y.J., Chen X.L.: Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech. Mater. 35, 69–81 (2003)

    Article  Google Scholar 

  5. Li S., Thouless M.D., Waas A.M., Schroeder J.A., Zavattieri P.D.: Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer-matrix composite. Compos. Sci. Technol. 65, 537–549 (2005)

    Article  Google Scholar 

  6. Shan B.X., Pelegri A.A., Pan Y.: Interfacial crack kinking subjected to contact effects. J. Mech. Mater. Struct. 3, 591–605 (2008)

    Article  Google Scholar 

  7. Recchia, S.S., Pelegri, A.A., et. al: A hierarchical model for Kevlar fiber failure. In: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, p. 4 (2013)

  8. Favier V., Dendievel R., Canova G.: Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Materialia 45, 1557–1565 (1997)

    Article  Google Scholar 

  9. Chasiotis, W.K.I.: Experimentation at the Micron–Submicron Scale, Vol. 8, Comprehensive Structural Integrity, no. Interfacial and Nanoscale Failure, pp. 41–87. Elsevier, Amsterdam (2003)

  10. Dobb, M., Johnson, D.J., Majeed, A., P.S.B: Microvoids in aramid type fibrous polymers. Polymer 20, 1284–1288 (1979)

    Google Scholar 

  11. Naraghi M., Ozkan I., Chasiotiis S.S., de Boer M.P., Hazra S.: MEMS platform for on-chip nanomechanical experiments with strong and highly ductile nanofibers. J. Micromech. Microeng. 20, 125022-1–125022-9 (2010)

    Article  Google Scholar 

  12. Cousins S.K., Brown R.M.: Cellulose 1 microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36, 3885–3888 (1995)

    Article  Google Scholar 

  13. Jia X., Williams R.A.: A packing algorithm for particles of arbitrary shapes. Powder Technol. 129, 175–186 (2001)

    Article  Google Scholar 

  14. Lee Y., Fang C., Tsou Y.-R., Lu L.-S., Yang C.-T.: A packing algorithm for three-dimensional convex particles. Granul. Matter 11, 307–315 (2009)

    Article  MATH  Google Scholar 

  15. Nolan G.T., Kavanagh P.E.: Random packing of nonspherical particles. Powder Technol. 84, 199–205 (1995)

    Article  Google Scholar 

  16. Gray W.A.: The Packing of Solid Particles. Chapman & Hall, London (1968)

    Google Scholar 

  17. Zhang, W.: Experimental and Computational Analysis of Random Cylinder Packings with Applications. A Dissertation Submitted to Louisiana State University and Agricultural and Mechanical College (2006)

  18. Zhou G., Sun X.: Multi-chain digital element analysis in textile mechanics. Compos. Sci. Technol. 64, 239–244 (2003)

    Article  Google Scholar 

  19. Lim T.-C.: Three-level hierarchical approach in modeling sheet thermoforming. Int. J. Mech. Sci. 45, 1097–1117 (2003)

    Article  MATH  Google Scholar 

  20. Boubaker B., Haussy B., Ganghoffer J.-F.: Consideration of the yarn–yarn. Mech. Res. Commun. 34, 371–378 (2007)

    Article  MATH  Google Scholar 

  21. D’Amato, E.: Finite element modeling of textile composites. Compos. Struct. 54, 467–475 (2001)

    Google Scholar 

  22. Verberne C.W.: Mechanical Modelling of Textitles. University of Technology, Eindhoven (2010)

    Google Scholar 

  23. Loikkanen, M., Praveen, G., Powell, D.: Simulation of Ballistic Impact on Composite Panels (2008)

  24. Grujicic, M., Bell, W.C., Glomski, P.S., Pandurangan, B., Yen, C.F., Cheeseman, B.A.: Filament level modeling of aramid based high performance structural materials. J. Mater. Eng. Perform. 20, 1401–1413 (2011)

    Google Scholar 

  25. Altendorf H., Jeulin D.: Random walk based stochastic modeling of 3D fiber systems. Phys. Rev. 83, 10 (2010)

    Google Scholar 

  26. Berhan L., Sastry A.M.: Modeling percolation in high-aspect-ratio fiber systems. ii. The effect of waviness on the. Phys. Rev. 75, 041121 (2007)

    Google Scholar 

  27. Aboolfathi N., Naik A., Chafi M., Karami G., Ziejewski M.: A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter. Comput. Methods Biomech. Biomed. Eng. 12, 249–262 (2009)

    Article  Google Scholar 

  28. Shreiber D.I., Hao H.L., Elias R.: Probing the influence of myelin and glia on the tensile properties of the spinal cord. Biomech. Model. Mechanobiol. 8, 311–321 (2009)

    Article  Google Scholar 

  29. Pan, Y., Schreiber, D.I., Pelegri, A.A.: A transition model for finite element simulation on kinematics of central nervous system white matter. In: IEEE Transactions on Biomedical Engineering, Special Issue: Multi-Scale Modeling and Analysis for Computational Biology and Medicine (2011)

  30. Johnson C.L., McGarry M., Gharibans A.A., Weaver J.B., Paulsen K.D., Wang H., Olivero W.C., Sutton B.P., Georgiadis J.G.: Local mechanical properties of white matter structures in the human brain. NeuroImage 79, 145–152 (2013)

    Article  Google Scholar 

  31. Streitberger K.J., Wiener E., Hoffmann J., Freimann F.B., Klatt D., Braun J., Lin K., McLaughlin J., Sprung C., Klingebiel R., Sack I.: In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed. 24, 385–392 (2011)

    Google Scholar 

  32. Sandia National Labs, Cubit Home Page, 03 2012. (Online) www.cubit.sandia.gov/help-version13.2/Cubit_13.2_User_Documentation.pdf. Accessed 21 04 2013

  33. Pan, Y., Patel, V., Pelegri, A.A., Shreiber, D.I.: Psuedo 3D RVE based finite element simulation on white matter. In: Proceedings of the ASME 2012 International Mechnical Engineering Congress and Exposition (2012)

  34. Hamilton, B.J.: Process and Product Data Management for Staple Yarn Manufacturing, A thesis submitted to the Graduate Faculty, North Carolina State University (2010)

  35. Zupin, Z., Dimitrovski, K.: Mechanical Properties of Fabrics Made from Cotton and Biodegradable Yarns Bamboo, SPF, PLA in Weft. Woven Fabric Engineering (2010)

  36. Sierra Solid Mechanics Team: Presto 4.16 Users Guide. Sandia National Labs, Albuquerque (2010)

  37. Majumdar A., Mukhopadhyay S.: Properties of ring spun yarns made from cotton and regenerated Bamboo. Indian J. Fibre Textile Res. 36, 18–23 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assimina A. Pelegri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recchia, S., Zheng, J. & Pelegri, A.A. Fiberwalk: a random walk approach to fiber representative volume element creation. Acta Mech 225, 1301–1312 (2014). https://doi.org/10.1007/s00707-013-1069-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1069-x

Keywords

Navigation