Skip to main content
Log in

Positive effect of surface modification with titanium carbosilicide on performance of lithium-transition metal phosphate cathode materials

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The capacity retention of lithium intercalated cathode materials is strongly dependent on their surface condition, if surface is modified with various solid state compounds. In the present work one representative of carbosilicide type compounds known in literature as MAX-phase group (Mn+1AXn, where M is a transition metal, A is an element of III–VI group, and X is C and/or N) was used as surface modification agent. Synthesis temperature of Ti3SiC2 (TSC) compound, which is close to 1500 °C, was decreased by the application of special treatment of the reagents blend. The mechanism acting of TSC modification is presented and compared with other models, suggested in literature. Based on the results of experiments with different TSC contents and different substrate types we found positive effect of surface modification with TSC of the phosphate-based lithium intercalated cathode materials on their capacity fading rate. Outstanding high electronic conductivity of TSC makes this phase applicable as co-component in the composite electrode materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Adv Mater 14:1525

    Article  CAS  Google Scholar 

  2. Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L (2000) Chem Mater 12:3240

    Article  CAS  Google Scholar 

  3. Liu C, Masse R, Nan X, Cao G (2016) Energy Storage Mater 4:15

    Article  Google Scholar 

  4. Ivanishchev AV, Ushakov AV, Ivanishcheva IA, Churikov AV, Mironov AV, Fedotov SS, Khasanova NR, Antipov EV (2017) Electrochim Acta 230:479

    Article  CAS  Google Scholar 

  5. Sun CW, Rajasekhara S, Dong YZ, Goodenough JB (2011) ACS Appl Mater Interfaces 3:3772

    Article  CAS  PubMed  Google Scholar 

  6. Chen YH, Zhao YM, An XN, Liu JM, Dong YZ, Chen L (2009) Electrochim Acta 54:5844

    Article  CAS  Google Scholar 

  7. Yao JH, Wei SS, Zhang PJ, Shen CQ, Aguey-Zinsou KF, Wang LB (2012) J Alloys Compd 532:49

    Article  CAS  Google Scholar 

  8. Yuan W, Yan J, Tang ZY, Sha O, Wang JM, Mao WF, Ma L (2012) Electrochim Acta 72:138

    Article  CAS  Google Scholar 

  9. Bini M, Ferrari S, Casponi D, Massarotti V (2011) Electrochim Acta 56:2648

    Article  CAS  Google Scholar 

  10. Chen MM, Zhao Z, Gao XP, Peng WX, Wei JP (2008) J Phys Chem C 112:5689

    Article  CAS  Google Scholar 

  11. Pan AQ, Liu J, Zhang JG, Xu W, Cao GZ, Nie ZM, Arey BW, Liang SQ (2010) Electrochem Commun 12:1674

    Article  CAS  Google Scholar 

  12. Teng F, Hu ZH, Ma XH, Zhang LC, Ding CX, Yu Y, Chen CH (2013) Electrochim Acta 91:43

    Article  CAS  Google Scholar 

  13. Eftekhari A (2017) J Power Sources 343:395

    Article  CAS  Google Scholar 

  14. Konarova M, Taniguchi I (2010) J Power Sources 195:3661

    Article  CAS  Google Scholar 

  15. Chong J, Xun S, Song X, Ridgway P, Liu G, Battaglia VS (2012) J Power Sources 200:67

    Article  CAS  Google Scholar 

  16. Kam KC, Gustafsson T, Thomas JO (2011) Solid State Ion 192:356

    Article  CAS  Google Scholar 

  17. Fujita Y, Iwase H, Shida K, Liao J, Fukui T (2017) J Power Sources 361:115

    Article  CAS  Google Scholar 

  18. Jeitschko W, Nowotny H (1967) Monatsh Chem 98:329

    Article  CAS  Google Scholar 

  19. Barsoum MW, El-Raghy T (1996) J Am Ceram Soc 79:1953

    Article  CAS  Google Scholar 

  20. Barsoum MW, El-Raghy T (2001) Am Sci 89:334

    Article  Google Scholar 

  21. Högberg H, Hultman L, Emmerlich J, Joelsson T, Eklund P, Molina-Aldareguia JM, Palmquist J-P, Wilhelmsson O, Jansson U (2005) Surf Coat Technol 193:6

    Article  CAS  Google Scholar 

  22. Sun ZM (2011) Int Mater Rev 56:143

    Article  CAS  Google Scholar 

  23. An J, Liu C, Guo R, Li Y, Xu W (2012) J Electrochem Soc 159:A2038

    Article  CAS  Google Scholar 

  24. Pampuch R, Lis J, Stobierski L, Tymkiewicz M (1989) J Eur Ceram Soc 5:283

    Article  CAS  Google Scholar 

  25. Cai G, Guo R, Liu L, Yang Y, Zhang C, Wu C, Guo W, Jiang H (2015) J Power Sources 288:136

    Article  CAS  Google Scholar 

  26. Wu C, Guo R, Cai G, Zhang C, Yang Y, Guo W, Liu Z, Wan Y, Jiang H (2016) J Power Sources 306:779

    Article  CAS  Google Scholar 

  27. Sun D, Wu C, Guo R, Liu Z, Xie D, Zheng M, Wang B, Peng J, Jiang H (2017) Ceram Int 43:2791

    Article  CAS  Google Scholar 

  28. Medvedeva NI, Enyashin AN, Ivanovskii AI (2011) J Struct Chem 52:785

    Article  CAS  Google Scholar 

  29. Xu YG, Ou X-D, Rong X-M (2014) Mater Lett 116:322

    Article  CAS  Google Scholar 

  30. Eklund P, Beckers M, Jansson U, Hogberg H, Hultman L (2010) Thin Solid Films 518:1851

    Article  CAS  Google Scholar 

  31. Kero I, Tegman R, Antti M-L (2010) Ceram Int 36:375

    Article  CAS  Google Scholar 

  32. Grigoryan AE, Rogachev AS, Sychev AE, Levashov EA (1999) Refract Ind Ceram 40:484

    Article  CAS  Google Scholar 

  33. Goto T, Hirai T (1987) Mater Res Bull 22:1195

    Article  CAS  Google Scholar 

  34. Sun Z, Zhang Y, Zhou Y (1999) Scr Mater 41:61

    Article  CAS  Google Scholar 

  35. Sun Z, Zhou Y (1999) Mater Res Innov 2:227

    Article  Google Scholar 

  36. Arunajatesan S, Carim AH (1995) J Am Ceram Soc 78:667

    Article  CAS  Google Scholar 

  37. Kellerman DG, Gorshkov VS, YaN Blinovskov (1997) Inorg Mater 33:271

    CAS  Google Scholar 

  38. Yang SL, Sun ZM, Hashimoto H (2004) J Alloys Compd 368:312

    Article  CAS  Google Scholar 

  39. Goldin BA, Istomin PV, Ryabkov YuI (1997) Inorg Mater 33:577

    CAS  Google Scholar 

  40. Istomin PV, Nadutkin AV, Ryabkov YuI, Goldin BA (2006) Inorg Mater 42:250

    Article  CAS  Google Scholar 

  41. Zou Y, Sun ZM, Tada S, Hashimoto H (2008) J Alloys Compd 461:579

    Article  CAS  Google Scholar 

  42. Liang B, Han X, Zou Q, Zhao Y, Wang M (2009) Int J Refract Met Hard Mater 27:664

    Article  CAS  Google Scholar 

  43. Cui Y, Xu Y, Xu S, Li X, Yang J (2009) Mater Sci Forum 620–622:331

    Article  Google Scholar 

  44. Avvakumov EG (1986) Mechanicheskie metodi activacii chimicheskih processov. Nauka, Novosibirsk

    Google Scholar 

  45. Chen YS, Zhang D, Bian XF, Bie XF, Wang CZ, Du F, Jang M, Chen G, Wei YJ (2012) Electrochim Acta 79:95

    Article  CAS  Google Scholar 

  46. Zhang S, Wu Q, Deng C, Liu FL, Zhang M, Meng FL, Gao H (2012) J Power Sources 218:56

    Article  CAS  Google Scholar 

  47. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) J Am Chem Soc 125:10402

    Article  CAS  PubMed  Google Scholar 

  48. Ivanishchev AV, Churikov AV, Ushakov AV (2014) Electrochim Acta 122:187

    Article  CAS  Google Scholar 

  49. Zhang LL, Liang G, Peng G, Zou F, Huang YH, Croft MC, Ignatov A (2012) J Phys Chem C 116:12401

    Article  CAS  Google Scholar 

  50. Markevich E, Sharabi R, Gottlieb H, Borgel V, Fridman K, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Bruenig C (2012) Electrochem Commun 15:22

    Article  CAS  Google Scholar 

  51. Markovsky B, Rodkin A, Cohen YS, Palchik O, Levi E, Aurbach D, Kim H-J, Schmidt M (2003) J Power Sources 119–121:504

    Article  CAS  Google Scholar 

  52. Ahrens LH (1952) Geochim Cosmochim Acta 2:155

    Article  CAS  Google Scholar 

  53. Svitan’ko A, Scopets V, Novikova S, Yaroslavtsev A (2015) Solid State Ion 271:42

    Article  CAS  Google Scholar 

  54. Iltchev N, Chen Y, Okada S, Yamaki J-I (2003) J Power Sources 119–121:749

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Russian Foundation for Basic Research (projects No. 18-53-45004 and No. 16-33-00328) and to the Department of Science and Technology of the Ministry of Science and Technology of the Republic of India (project No. INT/RUS/RFBR/320) for the financial support of the present work. The authors appreciate I.A. Bobrikov for the opportunity to use XRD and SEM methods for analysis of structural and morphological properties of studied materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr V. Ivanishchev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanishcheva, I.A., Ivanishchev, A.V. & Dixit, A. Positive effect of surface modification with titanium carbosilicide on performance of lithium-transition metal phosphate cathode materials. Monatsh Chem 150, 489–498 (2019). https://doi.org/10.1007/s00706-018-2314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2314-8

Keywords

Navigation