Skip to main content
Log in

The readthrough domain of pea enation mosaic virus coat protein is not essential for virus stability in the hemolymph of the pea aphid

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A fraction of the coat protein (CP) subunits in virions of members of the family Luteoviridae contain a C-terminal extension called the readthrough domain (RTD). The RTD is necessary for persistent aphid transmission, but its role is unknown. It has been reported to be required for virion stability in the hemolymph. Here, we tested whether this was the case for pea enation mosaic virus (PEMV) virions in the pea aphid (Acyrthosiphon pisum) using RNA1Δ, a natural deletion mutant lacking the middle portion of the RTD ORF, and CPΔRTD, in which the entire RTD ORF was deleted. In infected plants, RNA1Δ virions were as abundant and stable as wild-type (WT) virions, while CPΔRTD virions were unstable. No RTD of any size was translated from artificial subgenomic mRNA of CPΔRTD or RNA1Δ in vitro. Thus, only the major CP was present in the mutant virions. Using real-time RT-PCR to detect virion RNA, no significant differences in the concentration or stability of WT and RNA1Δ virions were detected in the aphid hemolymph at much longer times than are necessary for virus transmission. Thus, the RTD is not necessary for stability of PEMV RNA in the aphid hemolymph, and it must play another role in aphid transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brault V, Van den Heuvel JF, Verbeek M, Ziegler-Graff V, Reutenauer A, Herrbach E, Garaud JC, Guilley H, Richards K, Jonard G (1995) Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J 14:650–659

    PubMed  CAS  Google Scholar 

  2. Brault V, Perigon S, Reinbold C, Erdinger M, Scheidecker D, Herrbach E, Richards K, Ziegler-Graff V (2005) The polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid. J Virol 79:9685–9693

    Article  PubMed  CAS  Google Scholar 

  3. Brault V, Herrbach E, Reinbold C (2007) Electron microscopy studies on luteovirid transmission by aphids. Micron 38:302–312

    Google Scholar 

  4. Brown CM, Dinesh-Kumar SP, Miller WA (1996) Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J Virol 70:5884–5892

    PubMed  CAS  Google Scholar 

  5. Bruyere A, Brault V, Ziegler-Graff V, Simonis M-T, van den Heuvel JF, Richards K, Guilley H, Jonard G, Herrbach E (1997) Effects of mutations in the beet western yellows virus readthrough protein on its expression and packaging and on virus accumulation, symptoms and aphid transmission. Virology 230:323–334

    Article  PubMed  CAS  Google Scholar 

  6. Chay CA, Gunasinge UB, Dinesh-Kumar SP, Miller WA, Gray SM (1996) Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology 219:57–65

    Article  PubMed  CAS  Google Scholar 

  7. de Zoeten GA, Skaf JS (2001) Pea enation mosaic and the vagaries of a plant virus. In: Advances in virus research. Academic Press, New York, pp 323–350

  8. Demler SA, de Zoeten GA (1989) Characterization of a satellite RNA associated with pea enation mosaic virus. J Gen Virol 70:1075–1084

    Article  CAS  Google Scholar 

  9. Demler SA, Zoeten GA (1991) The nucleotide sequence and luteovirus-like nature of RNA 1 of an aphid non-transmissible strain of pea enation mosaic virus. J Gen Virol 72:1819–1834

    Article  PubMed  CAS  Google Scholar 

  10. Demler SA, Borkhsenious ON, Rucker DG, de Zoeten GA (1994) Assessment of the autonomy of replicative and structural functions encoded by the luteo-phase of pea enation mosaic virus. J Gen Virol 75:997–1007

    Article  PubMed  CAS  Google Scholar 

  11. Demler SA, Rucker-Feeney DG, Skaf JS, de Zoeten GA (1997) Expression and suppression of circulative aphid transmission in pea enation mosaic virus. J Gen Virol 78:511–523

    PubMed  CAS  Google Scholar 

  12. Dinesh-Kumar SP, Brault V, Miller WA (1992) Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology 187:711–722

    Article  PubMed  CAS  Google Scholar 

  13. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) In: 8th Report of the International Committee on Taxonomy of Viruses. Academic Press, Elsevier

  14. Filichkin SA, Brumfield S, Filichkin TP, Young MJ (1997) In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. J Virol 71:569–577

    PubMed  CAS  Google Scholar 

  15. Gildow FE (1993) Evidence for receptor-mediated endocytosis regulating luteovirus acquisition by aphids. Phytopathol 83:270–277

    Article  Google Scholar 

  16. Gildow FE (1999) Luteovirus transmission mechanisms regulating vector specificity. In: Smith HG, Barker H (eds) The Luteoviridae. CABI, Wallingford, pp 88–111

    Google Scholar 

  17. Gildow FE, Reavy B, Mayo MA, Duncan GH, Woodford JAT, Lamb JW, Hay RT (2000) Aphid acquisition and cellular transport of Potato leafroll virus-like particles lacking P5 Readthrough protein. Phytopathol 90:1153–1161

    Article  CAS  Google Scholar 

  18. Goncalves MC, van der Wilk F, Dullemans AM, Verbeek M, Vega J, van den Heuvel JFJM (2005) Aphid transmission and Buchnera sp. GroEL affinity of a potato leafroll virus RTD deficient mutant. Fitopatol bras 30:259–266

    Google Scholar 

  19. Gray SM, Banerjee N (1999) Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol Rev 63:128–148

    PubMed  CAS  Google Scholar 

  20. Gray SM, Gildow FE (2003) Luteovirus-aphid interactions. Annu Rev Phytopathol 41:539–566

    Article  PubMed  CAS  Google Scholar 

  21. Harris KF (1979) Leafhoppers and aphids as biological vectors: vector-virus relationship. In: Maramorosch K, Harris KF (eds) Leafhopper vectors and plant disease agents. Academic Press, New York, pp 217–308

    Google Scholar 

  22. Lai S-C, Chen C-C, Hou RF (2001) Electron microscopic observations on wound-healing in larvae of the mosquito Armigeres subalbatus (diptera: Culicidae). J Med Entomol 38:836–843

    Article  PubMed  CAS  Google Scholar 

  23. Lee L, Palukaitis P, Gray SM (2002) Host-dependent requirement for the Potato leafroll virus 17-kDa protein in virus movement. Mol Plant-Microbe Interact 15:1086–1094

    Article  PubMed  CAS  Google Scholar 

  24. Leiser RM, Ziegler GV, Reutenauer A, Herrbach E, Lemaire O, Guilley H, Richards K, Jonard G (1992) Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus. Proc Natl Acad Sci USA 89:9136–9140

    Article  PubMed  CAS  Google Scholar 

  25. Liu S, He X, Park G, Josefsson C, Perry KL (2002) A conserved capsid protein surface domain of cucumber mosaic virus is essential for aphid vector transmission. J Virol 76:9756–9762

    Article  PubMed  CAS  Google Scholar 

  26. Liu S, Bonning BC, Allen Miller W (2006) A simple wax-embedding method for isolation of aphid hemolymph for detection of luteoviruses in the hemocoel. J Virol Meth 132:174–180

    Article  CAS  Google Scholar 

  27. Markus R, Kurucz R, Rus F, Ando I (2005) Sterile wounding is a minimal and sufficient trigger for a cellular immune response in Drosophila melanogaster. Immunol Lett 101:108–111

    Article  PubMed  CAS  Google Scholar 

  28. Miller WA, Liu S, Beckett R (2002) Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Mol Plant Path 3:177–183

    Article  CAS  Google Scholar 

  29. Mohan BR, Dinesh-Kumar SP, Miller WA (1995) Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virol 212:186–195

    Article  CAS  Google Scholar 

  30. Mutterer JD, Stussi-Garaud C, Michler P, Richards KE, Jonard G, Ziegler-Graff V (1999) Role of the beet western yellows virus readthrough protein in virus movement in Nicotiana clevelandii. J Gen Virol 80:2771–2778

    PubMed  CAS  Google Scholar 

  31. Nurkiyanova KM, Ryabov EV, Commandeur U, Duncan GH, Canto T, Gray SM, Mayo MA, Taliansky ME (2000) Tagging potato leafroll virus with the jellyfish green fluorescent protein gene. J Gen Virol 81:617–626

    PubMed  CAS  Google Scholar 

  32. Nurkiyanova KM, Ryabov EV, Kalinina NO, Fan Y, Andreev I, Fitzgerald AG, Palukaitis P, Taliansky M (2001) Umbravirus-encoded movement protein induces tubule formation on the surface of protoplasts and binds RNA incompletely and non-cooperatively. J Gen Virol 82:2579–2588

    PubMed  CAS  Google Scholar 

  33. Peter KA, Liang D, Palukaitis P, Gray SM (2008) Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation. J Gen Virol 89:2037–2045

    Article  PubMed  CAS  Google Scholar 

  34. Prüfer D, Wipf-Scheibel C, Richards K, Guilley H, Lecoq H, Jonard G (1995) Synthesis of a full-length infectious cDNA clone of cucurbit aphid-borne yellows virus and its use in gene exchange experiments with structural proteins from other luteoviruses. Virology 214:150–158

    Article  PubMed  Google Scholar 

  35. Reavy B, Mayo MA (2002) Persistent transmission of luteoviruses by aphids. Adv Bot Res 36:21–46

    Article  CAS  Google Scholar 

  36. Reichhart JM (2005) Tip of another iceberg: Drosophila serpins. Trends in Cell Biol 15:659–665

    Article  CAS  Google Scholar 

  37. Reinbold C, Gildow FE, Herrbach E, Ziegler-Graff V, Goncalves MC, van den Heuvel JF, Brault V (2001) Studies on the role of the minor capsid protein in transport of Beet western yellows virus through Myzus persicae. J Gen Virol 82:1995–2007

    PubMed  CAS  Google Scholar 

  38. Rochow WF (1970) Barley yellow dwarf virus: Phenotypic mixing and vector specificity. Science 167:875–878

    Article  PubMed  Google Scholar 

  39. Rouze-Jouan J, Terradot L, Pasquer F, Tanguy S, Giblot Ducray-Bourdin D (2001) The passage of Potato leafroll virus through Myzus persicae gut membrane regulates transmission efficiency. J Gen Virol 82:17–23

    PubMed  CAS  Google Scholar 

  40. Ryabov EV, Robinson DJ, Taliansky M (2001) Umbravirus-encoded proteins both stabilize heterologous viral RNA and mediate its systemic movement in some plant species. Virology 288:391–400

    Article  PubMed  CAS  Google Scholar 

  41. Salgueiro S, Hull R (1999) Comparison of pea enation mosaic virus (PEMV) isolates: sequence of coat protein and aphid transmission protein genes of a European isolate. J Phytopathol 147:391–396

    Article  CAS  Google Scholar 

  42. Skaf JS, Rucker DG, Demler SA, Wobus CE, de Zoeten GA (1997) The coat protein is dispensable for the establishment of systemic infections by pea enation mosaic enamovirus. Mol Plant-Microbe Interact 10:929–932

    Article  CAS  Google Scholar 

  43. Skaf J, Schultz M, Hirata H, de Zoeten G (2000) Mutational evidence that the VPg is involved in the replication and not the movement of Pea enation mosaic virus-1. J Gen Virol 81:1103–1109

    PubMed  CAS  Google Scholar 

  44. Taliansky M, Mayo MA, Barker H (2003) Potato leafroll virus: a classic pathogen shows some new tricks. Mol Plant Pathol 4:81–89

    Article  CAS  Google Scholar 

  45. van den Heuvel JF, Verbeek M, van der Wilk F (1994) Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J Gen Virol 75:2559–2565

    Article  PubMed  Google Scholar 

  46. van den Heuvel JFJM, Bruyere A, Hougenhout SA, Ziegler-Graff V, Brault V, Verbeek M, van der Wilk F, Richards K (1997) The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J Virol 71:7258–7265

    PubMed  Google Scholar 

  47. Veidt I, Bouzoubaa SE, Leiser RM, Ziegler-Graff V, Guilley H, Richards K, Jonard G (1992) Synthesis of full-length transcripts of beet western yellows virus RNA: messenger properties and biological activity in protoplasts. Virology 186:192–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the late Dr. Gus A. de Zoeten for generously providing the infectious clones of the PEMV genome, and Dr. Robert L. Harrison for making the anti-PEMV antiserum. This work was funded by the USDA North Central Biotechnology Program 97-34340-39087 to BCB and WAM, and USDA grant number 2005-35607-15233 to WAM and BCB. This journal paper of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 6651, was supported by Hatch Act and State of Iowa funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Allen Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Sivakumar, S., Wang, Z. et al. The readthrough domain of pea enation mosaic virus coat protein is not essential for virus stability in the hemolymph of the pea aphid. Arch Virol 154, 469–479 (2009). https://doi.org/10.1007/s00705-009-0327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0327-7

Keywords

Navigation