Skip to main content
Log in

Impact of ocean warm layer thickness on the intensity of hurricane Katrina in a regional coupled model

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The effect of pre-storm subsurface thermal structure on the intensity of hurricane Katrina (2005) is examined using a regional coupled model. The Estimating Circulation and Climate of Ocean (ECCO) ocean state estimate is used to initialize the ocean component of the coupled model, and the source of deficiencies in the simulation of Katrina intensity is investigated in relation to the initial depth of 26 °C isotherm (D26). The model underestimates the intensity of Katrina partly due to shallow D26 in ECCO. Sensitivity tests with various ECCO initial fields indicate that the correct relationship between intensity and D26 cannot be derived because D26 variability is underestimated in ECCO. A series of idealized experiments is carried out by modifying initial ECCO D26 to match the observed range. A more reasonable relationship between Katrina’s intensity and pre-storm D26 emerges: the intensity is much more sensitive to D26 than to sea surface temperature (SST). Ocean mixed layer process plays a critical role in modulating inner-core SSTs when D26 is deep, reducing mixed layer cooling and lowering the center pressure of the Katrina. Our result lends strong support to the notion that accurate initialization of pre-storm subsurface thermal structure in prediction models is critical for a skillful forecast of intensity of Katrina and likely other intense storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bender MA, Ginis I (2000) Real case simulations of hurricane–ocean interaction using a high resolution coupled model: Effects on hurricane intensity. Mon Weather Rev 126:917–946

    Article  Google Scholar 

  • Carton JA, Chepurin G, Cao X, Giese B (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I. Methodology. J Phys Oceanogr 30:294–309

    Article  Google Scholar 

  • Chang S, Anthes R (1978) Numerical simulations of the ocean’s nonlinear baroclinic response to translating hurricanes. J Phys Oceanogr 8:468–480

    Article  Google Scholar 

  • Chang S, Anthes R (1979) The mutual response of the tropical cyclone and the ocean. J Phys Oceanogr 9:128–135

    Article  Google Scholar 

  • Cione JJ, Uhlhorn EW (2003) Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Weather Rev 131:1783–1796

    Article  Google Scholar 

  • Davis X, Rothstein L, Dewar W, Menemenlis D (2011) Numerical investigations of seasonal and interannual variability of North Pacific subtropical mode water and its implications for Pacific climate variability. J Clim 24:2648–2665

    Article  Google Scholar 

  • DeMaria M, Kaplan J (1994) A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather Forecast 9:209–220

    Article  Google Scholar 

  • DeMaria M, Mainelli M, Shay LK, Knaff JA, Kaplan J (2005) Further improvements to the statistical hurricane intensity prediction scheme (SHIPS). Weather Forecast 20:531–543

    Article  Google Scholar 

  • Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401:665–666

    Article  Google Scholar 

  • Emanuel KA, DesAutles C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res 101:3747–3764

    Article  Google Scholar 

  • Falkovich A, Ginis I, Lord S (2005) Implementation of data assimilation and ocean initialization for the coupled GFDL/URI hurricane prediction system. J Atmos Ocean Technol 22:1918–1932

    Article  Google Scholar 

  • Gilson J, Roemmich D, Cornuelle B, Fu LL (1998) Relationship of TOPEX/Poseidon altimetric height to steric height and circulation of the North Pacific. J Geophys Res 103:27947–27965

    Article  Google Scholar 

  • Goni GJ, Knaff J (2009) Tropical cyclone heat potential. Bull Am Meteorol Soc 90:S54–S56

    Google Scholar 

  • Goni GJ, Trinanes J (2003) Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. EOS Trans Am Geophys Union 85:179

    Google Scholar 

  • Goni GJ et al (2009) Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography 22(3):176–183

    Article  Google Scholar 

  • Haidvogel DB, Arango HG, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic Basin. Simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32:239–281

    Article  Google Scholar 

  • Halliwell GR Jr, Shay LK, Uhlhorn E, Jacob SD, Smedstad O (2008) Initializing ocean models with GODAE ocean nowcast products for tropical cyclone forecasting. Mon Weather Rev 136:2576–2591

    Article  Google Scholar 

  • Halliwell GR Jr, Shay LK, Brewster JK, Teague WJ (2010) Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon Weather Rev 193:921–945. doi:10.1175/2010MWR3104.1

    Google Scholar 

  • Hong X, Chang SW, Raman S, Shay LK, Hodur R (2000) The interaction of hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon Weather Rev 128:1347–1365

    Article  Google Scholar 

  • Jacob DS, Shay LK, Mariano AJ, Black PG (2000) The three-dimensional mixed layer heat balance during Hurricane Gilbert. J Phys Oceanogr 30:1407–1429

    Article  Google Scholar 

  • Jaimes B, Shay LK (2009) Mixed layer cooling in mesoscale eddies during Katrina and Rita. Mon Weather Rev 137(12):4188–4207

    Article  Google Scholar 

  • Jaimes B, Shay LK (2010) Near-inertial wave wake of hurricanes Katrina and Rita over mesoscale oceanic eddies. J Phys Oceanogr 40:1320–1337

    Article  Google Scholar 

  • Juang HMH, Kanamitsu M (1994) The NMC nested regional spectral model. Mon Weather Rev 122:3–26

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization. An update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain–Fritsch scheme. The representation of cumulus convection in numerical models, Meteor. Monogr. No. 46, Amer. Meteor. Soc. 165–170

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kleinschmidt E Jr (1951) Gundlagen einer Theorie des tropischen Zyklonen. Archiv fur Meteorologie, Geophysik und Bioklimatologie, Serie A 4:53–72

    Article  Google Scholar 

  • Knutson TR, Sirutis JJ, Garner ST, Held IM, Tuleya RE (2007) Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull Am Meteorol Soc 88:1549–1565

    Article  Google Scholar 

  • Kunze E (1985) Near-inertial wave propagation in geostrophic shear. J Phys Oceanogr 15:544–565

    Article  Google Scholar 

  • Leipper DF, Volgenau D (1972) Hurricane heat potential of the Gulf of Mexico. J Phys Oceanogr 2:218–224

    Article  Google Scholar 

  • Lin II, Wu CC, Emanuel KA, Lee IH, Wu CR, Pun IF (2005) The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon Weather Rev 133:2635–2649

    Article  Google Scholar 

  • Lin II, Pun IF, Ko DS (2008) Upper-ocean thermal structure and the western North Pacific category-5 typhoons. Part I. Ocean features and category-5 typhoon’s intensification. Mon Weather Rev 136:3288–3306

    Article  Google Scholar 

  • Lin II, Pun IF, Wu CC (2009) Upper ocean thermal structure and the western North Pacific Category-5 Typhoons Part II. Dependence on translation speed. Mon Weather Rev 137:3744–3757

    Article  Google Scholar 

  • Lin II, Goni GJ, Knaff JA, Forbes C, Ali MM (2012) Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat Hazards. doi:10.1007/s11069-012-0214-5

    Google Scholar 

  • Lloyd I, Vecchi G (2011) Observational evidence for oceanic controls on hurricane intensity. J Clim 24:1138–1153. doi:10.1175/2010JCLI3763.1

    Article  Google Scholar 

  • Lugo-Fernández A (2007) Is the loop current a chaotic oscillator? J Phys Oceanogr 37:1455–1469

    Article  Google Scholar 

  • Mainelli M, DeMaria M, Shay LK, Goni G (2008) Application of oceanic heat content estimation to operational forecasting of recent category 5 hurricanes. Weather Forecast 23:3–16

    Article  Google Scholar 

  • Malkus JS, Riehl H (1960) On the dynamics and energy transformation in steady-state hurricanes. Tellus 12:1–20. doi:10.1111/j.2153-3490.1960.tb01279.x

    Article  Google Scholar 

  • Menemenlis D, Campin J, Heimbach P, Hill C, Lee T, Nguyen A, Schodlok M, Zhang H (2008) ECCO2: high resolution global ocean and sea ice data synthesis. Mercator Ocean Q Newsl 31:13–21

    Google Scholar 

  • Murakami H et al (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260

    Article  Google Scholar 

  • Nowlin WD, Jochens AE, DiMarco SF, Reid RO (2000) Physical oceanography. Deepwater Gulf of Mexico environmental and socioeconomic data search and synthesis, vol 1. Narrative Report, OCS Study MMS 2000-049, Gulf of Mexico OCS Regional Office, Minerals Management Service, U.S. Department of the Interior, New Orleans, LA, pp 61–121

  • Powell MD, Houston SH, Reinhold TA (1996) Hurricane Andrew’s landfall in South Florida. Part I: standardizing measurements for documentation of surface wind fields. Weather Forecast 11:304–328

    Article  Google Scholar 

  • Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11:153–175

    Article  Google Scholar 

  • Price JF (2009) Metrics of hurricane–ocean interaction. Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci 5:351–368

    Article  Google Scholar 

  • Price JF, Sanford TB, Forristall GZ (1994) Forced stage response to a moving hurricane. J Phys Oceanogr 24:233–260

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J. Clim 20:5473–5496

    Article  Google Scholar 

  • Riehl H (1963) Some relations between wind and thermal structure of steady state hurricanes. J Atmos Sci 20:276–287

    Article  Google Scholar 

  • Riehl H, Malkus JS (1961) Some aspects of Hurricane Daisy, 1958. Tellus 13:181–213

    Article  Google Scholar 

  • Sanford TB, Black PG, Haustein J, Fenney JW, Forristall GZ, Price JF (1987) Ocean response to hurricanes, Part I. Observations. J Phys Oceanogr 17:2065–2083

    Article  Google Scholar 

  • Sanford TB, Price JF, Girton JB, Webb DC (2007) Highly resolved ocean response to a hurricane. Geophys Res Lett 34:L13604

    Article  Google Scholar 

  • Schade LR (1994) The ocean’s effect on hurricane intensity. Ph.D. thesis, Massachusetts Institute of Technology, USA

  • Schade LR, Emanuel KA (1999) The ocean’s effect on the intensity of tropical cyclones: results from a simple atmosphere-ocean model. J Atmos Sci 56:642–651

    Article  Google Scholar 

  • Scharroo R, Smith WH, Lillibridge JL (2005) Satellite altimetry and the intensification of Hurricane Katrina. EOS 86:366–367

    Article  Google Scholar 

  • Scoccimarro E et al (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Clim 24:4368–4384

    Article  Google Scholar 

  • Seo H, Miller AJ, Roads JO (2007) The Scripps Coupled Ocean–Atmosphere Regional (SCOAR) model, with applications in the eastern Pacific sector. J Clim 20:381–402

    Article  Google Scholar 

  • Shay LK (2009) Upper ocean structure: a revisit of the response to strong forcing events. In: Steele J et al (eds) Encyclopedia of ocean sciences, pp 4619–4637. Elsevier Press, Amsterdam

  • Shay LK, Brewster JK (2010) Oceanic Heat Content Variability in the Eastern Pacific Ocean for Hurricane Intensity Forecasting. Mon. Wea. Rev. 138:2110–2131

    Article  Google Scholar 

  • Shay LK, Uhlhorn EW (2008) Loop Current response to Hurricanes Isidore and Lili. Mon. Wea. Rev. 136:3248–3274

    Article  Google Scholar 

  • Shay LK, Goni GJ, Black PG (2000) Effect of a warm oceanic feature on hurricane Opal. Mon. Wea. Rev. 128:1366–1383

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, Free-surface, topography-following-coordinate ocean model. Ocean Modell. 9:347–404

    Article  Google Scholar 

  • Sturges W, Leben R (2000) Frequency of Ring Separations from the Loop Current in the Gulf of Mexico: A Revised Estimate. J Phys Oceanogr 30:1814–1819

    Article  Google Scholar 

  • Sun D, Gautam R, Cervone G, Boybei Z, Kafatos M (2006) Comment on Satellite altimetry and the intensification of Hurricane Katrina. EOS Trans. AGU 87(8):89

    Article  Google Scholar 

  • Sutyrin GG, Khain AP (1984) On the effect of air–ocean interaction on the intensity of a moving tropical cyclone. Atmos Ocean Phys 20:787–794

    Google Scholar 

  • Ubelmann C, Fu L (2011) Cyclonic eddies formed at the Pacific tropical instability wave fronts. J Geophys Res 116:C12021

    Article  Google Scholar 

  • Vukovich FM (1995) An updated evaluation of the loop current eddy-shedding frequency. J Geophys Res 100(C5):8655–8659

    Article  Google Scholar 

  • Wang Y (1998) On the bogusing of tropical cyclones in numerical models: the influence of vertical structure. Meteorol Atmos Phys 65:153–170

    Article  Google Scholar 

  • Weller RA (1982) The relation of near-inertial motions observed in the mixed-layer during the JASIN (1978) experiment to the local wind stress and to the quasigeostrophic flow field. J Phys Oceanogr 12:1122–1336

    Article  Google Scholar 

  • Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036

    Article  Google Scholar 

  • Willoughby HE, Black PG (1996) Hurricane Andrew in Florida. Dynamics of a disaster. Bull Am Meteorol Soc 77:543–549

    Article  Google Scholar 

  • Wu CC, Lee CY, Lin II (2007) The effect of the ocean eddy on tropical cyclone intensity. J Atmos Sci 64:3562–3578

    Article  Google Scholar 

  • Yablonsky RM, Ginis I (2008) Improving the initialization of coupled hurricane–ocean models using feature-based data-assimilation. Mon Weather Rev 136:2592–2607

    Article  Google Scholar 

  • Yoshimura K, Kanamitsu M (2008) Dynamical global downscaling of global reanalysis. Mon Weather Rev 136:2983–2998

    Article  Google Scholar 

  • Zamudio L, Hogan PJ (2008) Nesting the Gulf of Mexico in Atlantic HYCOM: oceanographic processes generated by Hurricane Ivan. Ocean Model 21:106–125

    Article  Google Scholar 

  • Zhao M, Held IM, Lin S-J, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653–6678

    Article  Google Scholar 

  • Zedler SE, Dickey TD, Doney SC, Price JF, Yu X, Mellor GL (2002) Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site. J Geophys Res 107(C12):3232. doi:10.1029/2001JC000969

    Google Scholar 

Download references

Acknowledgments

HS and SPX thank the support from NSF, NOAA, NASA and Japan Agency for Marine-Earth Science and Technology. HS acknowledges support from the Penzance Endowed Fund in Support of Assistant Scientists at WHOI. We thank the anonymous reviewers for their comments and suggestions, which substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyodae Seo.

Additional information

Responsible editor: J. Fasullo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, H., Xie, SP. Impact of ocean warm layer thickness on the intensity of hurricane Katrina in a regional coupled model. Meteorol Atmos Phys 122, 19–32 (2013). https://doi.org/10.1007/s00703-013-0275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-013-0275-3

Keywords

Navigation