Skip to main content
Log in

Highly active G-quadruplex/hemin DNAzyme for sensitive colorimetric determination of lead(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A UV-vis, CD, and differential pulse voltammetric study was performed on the deactivation of the activity of parallel G-quadruplex/hemin DNAzymes (G4 DNAzymes) by Pb(II). The G4 DNAzyme carries a d[TC] sequence at its 3′ end and is stabilized by potassium(I). On addition of Pb(II), the K(I) ions in the parallel G4 are replaced by Pb(II) to keep the parallel topology. Intruded Pb(II) decrease the affinity between the topology and hemin, this leads to a decrease of DNAzyme activity for catalyzing the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) by hydrogen peroxide to form a green dye with an absorption maximum at 420 nm. The assay does not use any amplification, and has a linear response in the 0.01 to 10 μM Pb(II) concentration range and a 7.1 nM limit of detection. The method was successfully applied to the analysis of spiked water samples.

Schematic diagram of the colorimetric lead(II) assay based on the competition between K+ and Pb2+ stabilized G-quadruplex/hemin DNAzymes (G4 DNAzymes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Flegal AR, Smith DR (1992) Current needs for increased accuracy and precision in measurements of lead in blood. Environ Res 58(2):125–133. https://doi.org/10.1016/s0013-9351(05)80209-9

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (2017) Guidelines for drinking water quality. WHO, Geneva

    Google Scholar 

  3. Liang G, Man Y, Li A, Jin X, Liu X, Pan L (2017) DNAzyme-based biosensor for detection of lead ion: a review. Microchem J 131:145–153. https://doi.org/10.1016/j.microc.2016.12.010

    Article  CAS  Google Scholar 

  4. Ma Y, Yu C, Yu Y, Chen J, Gao R, He J (2019) DNAzyme assisted recycling amplification method for ultrasensitive amperometric determination of lead (II) based on the use of a hairpin assembly on a composite prepared from nitrogen doped graphene, perylenetetracarboxylic anhydride, thionine and gold nanoparticles. Microchim Acta 186:677. https://doi.org/10.1007/s00604-019-3790-1

    Article  CAS  Google Scholar 

  5. Krieg R, Halbhuber KJ (2003) Recent advances in catalytic peroxidase histochemistry. Cell Mol Biol 49(4):547–563

    CAS  PubMed  Google Scholar 

  6. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3):249–259. https://doi.org/10.1016/j.phytochem.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  7. Nagaraja P, Shivakumar A, Shrestha AK (2009) Peroxidase-catalyzed oxidative coupling of paraphenylenediamine with 3-dimethylaminobenzoic acid: application in crude plant extracts. J Agric Food Chem 57(12):5173–5177. https://doi.org/10.1021/jf900696p

    Article  CAS  PubMed  Google Scholar 

  8. Ryan O, Smyth MR, O’Fágáin CO (1994) Horseradish peroxidase: the analyst’s friend. Essays Biochem 28:129–146

    CAS  PubMed  Google Scholar 

  9. Lin Y, Ren J, Qu X (2014) Nano-gold as artificial enzymes: hidden talents. Adv Mater 26(25):4200–4217. https://doi.org/10.1002/adma.201400238

    Article  CAS  Google Scholar 

  10. Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37(6):1153–1165. https://doi.org/10.1039/b718428j

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122(42):10466–10467. https://doi.org/10.1021/ja0021316

    Article  CAS  Google Scholar 

  12. Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126(39):12298–12305. https://doi.org/10.1021/ja046628h

    Article  CAS  PubMed  Google Scholar 

  13. Zhao X, Kong R, Zhang X, Meng H, Liu W, Tan W, Shen G, Yu R (2011) Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity. Anal Chem 83(13):5062–5066. https://doi.org/10.1021/ac200843x

    Article  CAS  PubMed  Google Scholar 

  14. Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci U S A 48(12):2013–2018. https://doi.org/10.1073/pnas.48.12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hardin CC, Perry AG, White K (2001) Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids. Biopolymers 56(3):147–194. https://doi.org/10.1002/1097-0282(2000/2001)56:3<147::aid-bip10011>3.0.co;2-n

    Article  CAS  Google Scholar 

  16. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem Biol 5(9):505–517. https://doi.org/10.1016/S1074-5521(98)90006-0

    Article  CAS  PubMed  Google Scholar 

  17. Zhu L, Li C, Zhu Z, Liu D, Zou Y, Wang C, Fu H, Yang CJ (2012) In vitro selection of highly efficient G-quadruplex-based DNAzymes. Anal Chem 84(19):8383–8390. https://doi.org/10.1021/ac301899h

    Article  CAS  PubMed  Google Scholar 

  18. Guo Y, Chen J, Cheng M, Monchaud D, Zhou J, Ju H (2017) A thermophilic tetramolecular G-quadruplex/hemin DNAzyme. Angew Chem Int Ed 129(52):16636–16640. https://doi.org/10.1002/anie.201708964

    Article  CAS  Google Scholar 

  19. Chen J, Guo Y, Zhou J, Ju H (2017) The effect of adenine repeats on G-quadruplex/hemin peroxidase mimicking DNAzyme activity. Chem A Eur J 23(17):4210–4215. https://doi.org/10.1002/chem.201700040

    Article  CAS  Google Scholar 

  20. Kotch FW, Fettinger JC, Davis JT (2000) A lead-filled G-quadruplex: insight into the G-quartet’s selectivity for Pb2+ over K+. Org Lett 2(21):3277–3280. https://doi.org/10.1021/ol0065120

    Article  CAS  PubMed  Google Scholar 

  21. Smirnov I, Shafer RH (2000) Lead is unusually effective in sequence-specific folding of DNA. J Mol Biol 296(1):1–5. https://doi.org/10.1006/jmbi.1999.3441

    Article  CAS  PubMed  Google Scholar 

  22. Li T, Wang E, Dong S (2009) Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates. J Am Chem Soc 131(42):15082–15083. https://doi.org/10.1021/ja9051075

    Article  CAS  PubMed  Google Scholar 

  23. Li T, Wang E, Dong S (2010) Lead(II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal Chem 82(4):1515–1520. https://doi.org/10.1021/ac902638v

    Article  CAS  PubMed  Google Scholar 

  24. Zhu X, Gao X, Liu Q, Lin Z, Qiu B, Chen G (2011) Pb2+-introduced activation of horseradish peroxidase (HRP)-mimicking DNAzyme. Chem Commun 47(26):7437–7439. https://doi.org/10.1039/c1cc11349f

    Article  CAS  Google Scholar 

  25. Elbaz J, Shlyahovsky B, Willner I (2008) A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine. Chem Commun 13:1569–1571. https://doi.org/10.1039/b716774a

    Article  CAS  Google Scholar 

  26. Tang D, Xia B, Tang Y, Zhang J, Zhou Q (2019) Metal-ion-induced DNAzyme on magnetic beads for detection of lead(II) by using rolling circle amplification, glucose oxidase, and readout of pH changes. Microchim Acta 186:318. https://doi.org/10.1007/s00604-019-3454-1

    Article  CAS  Google Scholar 

  27. Chen X, Zhai N, Snyder JH, Chen Q, Liu P, Jin L, Zheng Q, Lin F, Hu J, Zhou H (2015) Colorimetric detection of Hg2+ and Pb2+ based on peroxidase-like activity of graphene oxide-gold nanohybrids. Anal Methods 7(5):1951–1957. https://doi.org/10.1039/c4ay02801e

    Article  CAS  Google Scholar 

  28. Xu H, Liu B, Chen Y (2012) A colorimetric method for the determination of lead(II) ions using gold nanoparticles and a guanine-rich oligonucleotide. Microchim Acta 177(1):89–94. https://doi.org/10.1007/s00604-011-0744-7

    Article  CAS  Google Scholar 

  29. Ravikumar A, Panneerselvam P, Radhakrishnan K (2018) Fluorometric determination of lead(II) and mercury(II) based on their interaction with a complex formed between graphene oxide and a DNAzyme. Microchim Acta 185:2–8. https://doi.org/10.1007/s00604-017-2585-5

    Article  CAS  Google Scholar 

  30. Chen J, Zhang Y, Cheng M, Guo Y, Šponer J, Monchaud D, Mergny JL, Ju H, Zhou J (2018) How proximal nucleobases regulate the catalytic activity of G-quadruplex/hemin DNAzymes. ACS Catal 8(12):11352–11361. https://doi.org/10.1021/acscatal.8b03811

    Article  CAS  Google Scholar 

  31. Hud NV, Plavec J (2006) The role of cations in determining quadruplex structure and stability. In: Neidle S, Balasubramanian S (eds) Quadruplex nucleic acids. Royal Society of Chemistry, London, pp 100–130

    Google Scholar 

  32. Hatzakis E, Keika O, Yang D (2010) Thermodynamic stability and folding kinetics of the major G-quadruplex and its loop isomers formed in the nuclease hypersensitive element in the human C-Myc promoter: effect of loops and flanking segments on the stability of parallel-stranded intramolecular G-quadruplexes. Biochemistry 49(43):9152–9160. https://doi.org/10.1021/bi100946g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725. https://doi.org/10.1093/nar/gkp026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hazel P, Huppert J, Balasubramanian S, Neidle S (2004) Loop-length-dependent folding of G-quadruplexes. J Am Chem Soc 126(50):16405−16415. https://doi.org/10.1021/ja045154j

    Article  CAS  Google Scholar 

  35. Zhai W, Du C, Li X (2014) A series of logic gates based on electrochemical reduction of Pb2+ in self-assembled G-quadruplex on the gold electrode. Chem Commun 50(17):2093−2095. https://doi.org/10.1039/C3CC47763K

    Article  CAS  Google Scholar 

  36. Bobtelsky M, Jordan J (1947) The structure and behavior of ferric tartrate and citrate complexes in dilute solution. J Am Chem Soc 69(10):2286−2290. https://doi.org/10.1021/ja01202a014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (21503229, 21635005, and 21361162002), Fundamental Research Funds for the Central Universities (020514380070, 020514380085, 020514380105, 020514380144), the funds of Nanjing University (020514912216, 020514911200, 0205145051), and self-funding projects from State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University (5431ZZXM1905). J. Chen acknowledges funding from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhou or Huangxian Ju.

Ethics declarations

Competing interests

The authors declare they have no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, Y., Cheng, M. et al. Highly active G-quadruplex/hemin DNAzyme for sensitive colorimetric determination of lead(II). Microchim Acta 186, 786 (2019). https://doi.org/10.1007/s00604-019-3950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3950-3

Keywords

Navigation