Skip to main content
Log in

A dual signal amplification strategy combining thermally initiated SI-RAFT polymerization and DNA-templated silver nanoparticles for electrochemical determination of DNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly sensitive method is described for determination of DNA. It is based on dual signal amplification, viz. (a)DNA-templated metal deposition, and (b) thermally initiated surface-initiated reversible addition−fragmentation chain transfer (SI-RAFT) polymerization. A peptide nucleic acid (PNA) with a terminal thiol group was grasped onto a gold electrode by self-assembly. The modified electrode serves as a probe to selectively capture target DNA (tDNA). In the next step, Zr(IV) ions are bound to the phosphate groups of the tDNA. A chain-transfer agent (CTA) for thermally initiated SI-RAFT polymerization, 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPAD), was immobilized on tDNA by conjugation of the carboxy group to Zr(IV) ions. Subsequently, numerous monomers of glycosyloxyethyl methacrylate (GEMA) were connected to the CPAD by thermally initiated SI-RAFT polymerization with azobisisobutyronitrile (AIBN) serving as the free-radical thermal initiator. Afterwards, hydroxyl groups of the GEMA were oxidized to aldehyde groups reacting with sodium periodate, and silver nanoparticles were further introduced on the surface of electrode via “silver mirror reaction”. This results in a large electrochemical signal amplification. Under optimized conditions, the electrochemical signal (best measured at a working potential of 0 V vs. SCE (KCl; 3 M)) increases linearly with the logarithm of tDNA concentration in the 10 to 106 aM concentration range. The detection limit is as low as 5.6 aM (~34 molecules in a 10 μL sample). This is lower by factors between 2 and 1800 times than detection limits of most other ultra-sensitive electrochemical DNA assays.

Schematic representation of a dual signal amplification strategy combining thermally initiated surface-initiated reversible addition−fragmentation chain transfer polymerization (SI-RAFT) and DNA-templated silver nanoparticles for electrochemical determination of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kielar C, Reddavide FV, Tubbenhauer S, Cui M, Xu X, Grundmeier G, Zhang Y, Keller A (2018) Pharmacophore nanoarrays on DNA origami substrates as a single-molecule assay for fragment-based drug discovery. Angew Chem Int Ed 130(45):15089–15093

    Article  Google Scholar 

  2. Cheng L, Zhang Z, Zuo D, Zhu W, Zhang J, Zeng Q, Yang D, Li M, Zhao Y (2018) Ultrasensitive detection of serum microRNA using branched DNA-based SERS platform combining simultaneous detection of α-fetoprotein for early diagnosis of liver cancer. ACS Appl Mater Interfaces 10(41):34869–34877

    Article  CAS  Google Scholar 

  3. Landegren U, Kaiser R, Caskey CT, Hood L (1988) DNA diagnostics--Molecular techniques and automation. Science 242(4876):229–237

    Article  CAS  Google Scholar 

  4. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199

    Article  CAS  Google Scholar 

  5. Diculescu VC, Chiorcea-Paquim A-M, Oliveira-Brett AM (2016) Applications of a DNA-electrochemical biosensor. TrAC Trends Anal Chem 79:23–36

    Article  CAS  Google Scholar 

  6. Sassolas A B D L-B, and Loïc J. Blum. (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  CAS  Google Scholar 

  7. Huang H, Bai W, Dong C, Guo R, Liu Z (2015) An ultrasensitive electrochemical DNA biosensor based on graphene/au nanorod/polythionine for human papillomavirus DNA detection. Biosens Bioelectron 68:442–446

    Article  CAS  Google Scholar 

  8. Sun H, Qiu Y, Liu Q, Wang Q, Huang Y, Wen D, Zhang X, Liu Q, Liu G, Kong J (2019) Ultrasensitive DNA biosensor based on electrochemical atom transfer radical polymerization. Biosens Bioelectron 131:193–199

    Article  CAS  Google Scholar 

  9. Li C, Hu X, Lu J, Mao X, Xiang Y, Shu Y, Li G (2018) Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chem Sci 9(4):979–984

    Article  CAS  Google Scholar 

  10. Kou B, Chai Y, Yuan Y, Yuan R (2018) Dynamical regulation of enzyme cascade amplification by a regenerated DNA nanotweezer for ultrasensitive electrochemical DNA detection. Anal Chem 90(18):10701–10706

    Article  CAS  Google Scholar 

  11. C-c L, Zhang Y, Tang B, C-y Z (2018) Integration of single-molecule detection with magnetic separation for multiplexed detection of DNA glycosylases. Chem Commun 54(46):5839–5842

    Article  Google Scholar 

  12. Hu Q, Wang Q, Sun G, Kong J, Zhang X (2017) Electrochemically mediated surface-initiated de novo growth of polymers for amplified electrochemical detection of DNA. Anal Chem 89(17):9253–9259

    Article  CAS  Google Scholar 

  13. Banasiak A, Cassidy J, Colleran J (2018) A novel quantitative electrochemical method to monitor DNA double-strand breaks caused by a DNA cleavage agent at a DNA sensor. Biosens Bioelectron 117:217–223

    Article  CAS  Google Scholar 

  14. Imran H, Manikandan PN, Dharuman V (2019)Ultra-sensitive and selective label free electrochemical DNA detection at layer-by-layerself-assembled graphene oxide and vesicle liposome nano-architecture. J Electroanal Chem 835:10–21

    Article  CAS  Google Scholar 

  15. Ye Y, Xie J, Ye Y, Cao X, Zheng H, Xu X, Zhang Q (2018) A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon 129:730–737

    Article  CAS  Google Scholar 

  16. Chiefari J, Chong Y, Ercole F, Krstina J, Jeffery J, Le TP, Mayadunne RT, Meijs GF, Moad CL, Moad G (1998) Living free-radical polymerization by reversible addition− fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562

    Article  CAS  Google Scholar 

  17. Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process–a second update. Aust J Chem 62(11):1402–1472

    Article  CAS  Google Scholar 

  18. Anastasaki A, Nikolaou V, Brandford-Adams F, Nurumbetov G, Zhang Q, Clarkson GJ, Fox DJ, Wilson P, Kempe K, Haddleton DM (2015)Photo-induced living radical polymerization of acrylates utilizing a discrete copper (ii)–formate complex. Chem Commun 51(26):5626–5629

    Article  CAS  Google Scholar 

  19. Magenau AJ, Strandwitz NC, Gennaro A, Matyjaszewski K (2011) Electrochemically mediated atom transfer radical polymerization. Science 332(6025):81–84

    Article  CAS  Google Scholar 

  20. Lorandi F, Fantin M, Shanmugam S, Wang Y, Isse AA, Gennaro A, Matyjaszewski K (2019) Toward electrochemically mediated reversible addition–fragmentationchain-transfer(eRAFT) polymerization: can propagating radicals be efficiently electrogenerated from RAFT agents? Macromolecules 52(4):1479–1488

    Article  CAS  Google Scholar 

  21. Hu Q, Kong J, Han D, Zhang Y, Bao Y, Zhang X, Niu L (2019) Electrochemically controlled RAFT polymerization for highly sensitive electrochemical biosensing of protein kinase activity. Anal Chem 91(3):1936–1943

    Article  CAS  Google Scholar 

  22. Kong J, Ferhan A, Chen X, Zhang L, Balasubramanian N (2008) Polysaccharide templated silver nanowire for ultrasensitive electrical detection of nucleic acids. Anal Chem 80(19):7213–7217

    Article  CAS  Google Scholar 

  23. Wang J, Li B, Lu Q, Li X, Weng C, Yan X, Hong J, Zhou X (2019) A versatile fluorometric aptasensing scheme based on the use of a hybrid material composed of polypyrrole nanoparticles and DNA-silver nanoclusters: application to the determination of adenosine, thrombin, or interferon-gamma. Microchim Acta 186(6):356

    Article  Google Scholar 

  24. Leng X, Wang Y, Li R, Liu S, Yao J, Pei Q, Cui X, Tu Y, Tang D, Huang J (2018) Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Microchim Acta 185(3):168

    Article  Google Scholar 

  25. Berti L, Alessandrini A, Facci P (2005)DNA-templated photoinduced silver deposition. J Am Chem Soc 127(32):11216–11217

    Article  CAS  Google Scholar 

  26. Perrier S (2017) 50th anniversary perspective: RAFT polymerization—a user guide. Macromolecules 50(19):7433–7447

    Article  CAS  Google Scholar 

  27. Chen M, Wang Y, Su H, Mao L, Jiang X, Zhang T, Dai X (2018)Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sensors Actuators B Chem 255:2910–2918

    Article  CAS  Google Scholar 

  28. Zhang H, Song Z, Pan F, He F (2019) A surface-confined DNA assembly enabled target recycling amplification for multiplexed electrochemical DNA detection. J Electroanal Chem 833:290–296

    Article  CAS  Google Scholar 

  29. Chen M, Hou C, Huo D, Bao J, Fa H, Shen C (2016) An electrochemical DNA biosensor based on nitrogen-dopedgraphene/au nanoparticles for human multidrug resistance gene detection. Biosens Bioelectron 85:684–691

    Article  CAS  Google Scholar 

  30. Li L, Wang L, Xu Q, Xu L, Liang W, Li Y, Ding M, Aldalbahi A, Ge Z, Wang L, Yan J, Lu N, Li J, Wen Y, Liu G (2018) Bacterial analysis using an electrochemical DNA biosensor with poly-adenine-mediated DNA self-assembly. ACS Appl Mater Interfaces 10(8):6895–6903

    Article  CAS  Google Scholar 

  31. Shi XM, Fan GC, Tang X, Shen Q, Zhu JJ (2018) Ultrasensitive photoelectrochemical biosensor for the detection of HTLV-I DNA: a cascade signal amplification strategy integrating lambda-exonuclease aided target recycling with hybridization chain reaction and enzyme catalysis. Biosens Bioelectron 109:190–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21575066 and 21974068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhang or Jinming Kong.

Ethics declarations

Disclosures

The authors declare no competing financial or non-financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Sun, H., Li, L. et al. A dual signal amplification strategy combining thermally initiated SI-RAFT polymerization and DNA-templated silver nanoparticles for electrochemical determination of DNA. Microchim Acta 187, 35 (2020). https://doi.org/10.1007/s00604-019-3912-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3912-9

Keywords

Navigation