Skip to main content
Log in

Quadruply-labeled serum albumin as a biodegradable nanosensor for simultaneous fluorescence imaging of intracellular pH values, oxygen and temperature

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The construction of multiple fluorescent nanosensors for intracellular studies is a challenging task because spectral overlap of indicator probes can lead to cross-talk and mutual interference. This work describes biodegradable nanosensors that can simultaneously measure three intracellular parameters (temperature, pH and oxygen concentration). Bovine serum albumin (BSA) is selected as the scaffold to construct the triple nanosensor by covalent immobilization four fluorophores on BSA. The following luminophores were used: (a) fluorescein as a probe for pH values, (b) a platinum(II) porphyrin complex for oxygen; (c) a europium(III) clathrate complex for temperature, and (d) a rhodamine B as a reference dye. The nanoparticles have a size of 20 nm and show excellent biocompatibility and good brightness. The nanosensors were used for ratiometric imaging of intracellular pH values, oxygen and temperature in HeLa cells. The triple nanosensor responds reversibly and this can be used for real-time tracing of these key parameters. Owing to their biodegradable feature, the use of this kind of triple nanosensor reduce the stress on cellular activities because less nanosensors can be used to gather the total information.

A triple nanosensor for simultaneously ratiometrically sensing intracellular pH, oxygen and temperature values was constructed by covalently labelling four fluorophores on a single serum albumin protein. The nanosensor shows good sensitivity, biocompatibility, is biodegradable and suitable for continuously measuring these important parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Swietach P, Vaughan-Jones RD, Harris AL, Hulikova A (2014) The chemistry, physiology and pathology of pH in cancer. Philos Trans R Soc B 369(1638):20130099. https://doi.org/10.1098/rstb.2013.0099

    Article  Google Scholar 

  2. Zou X, Pan T, Jiang J, Li G, Song C, Sun R, Yang Z, Sun D, Hou C, Chen M, Tian Y (2017) Poly( ε -caprolactone)-containing graft copolymers for ratiometric extracellular oxygen sensing. Sensors Actuators B 248:108–118. https://doi.org/10.1016/j.snb.2017.03.126

    Article  CAS  Google Scholar 

  3. Wang XD, Stolwijk JA, Lang T, Sperber M, Meier RJ, Wegener J, Wolfbeis OS (2012) Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J Am Chem Soc 134(41):17011–17014. https://doi.org/10.1021/ja308830e

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Zhang C, Lv K, Wang H, Zhang P, Yi P, Jiang J (2017) A silica nanoparticle-based dual-responsive ratiometric probe for visualizing hypochlorite and temperature with distinct fluorescence signals. Sensors Actuators B 251:533–541. https://doi.org/10.1016/j.snb.2017.05.072

    Article  CAS  Google Scholar 

  5. Hou J-T, Ren WX, Li K, Seo J, Sharma A, Yu X-Q, Kim JS (2017) Fluorescent bioimaging of pH: from design to applications. Chem Sov Rev 46(8):2076–2090. https://doi.org/10.1039/C6CS00719H

    Article  CAS  Google Scholar 

  6. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364(7):656–665. https://doi.org/10.1056/NEJMra0910283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu H, Maruyama H, Masuda T, Honda A, Arai F (2014) Multi-fluorescent micro-sensor for accurate measurement of pH and temperature variations in micro-environments. Sensors Actuators B 203:54–62. https://doi.org/10.1016/j.snb.2014.06.079

    Article  CAS  Google Scholar 

  8. Xu W, Lu S, Xu M, Jiang Y, Wang Y, Chen X (2016) Simultaneous imaging of intracellular pH and O2using functionalized semiconducting polymer dots. J Mater Chem B 4(2):292–298. https://doi.org/10.1039/c5tb02071a

    Article  CAS  PubMed  Google Scholar 

  9. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien D-H, Brooks GA, Davis RW, Javey A (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514. https://doi.org/10.1038/nature16521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mimee M, Nadeau P, Hayward A, Carim S, Flanagan S, Jerger L, Collins J, McDonnell S, Swartwout R, Citorik RJ, Bulović V, Langer R, Traverso G, Chandrakasan AP, Lu TK (2018) An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360(6391):915–918. https://doi.org/10.1126/science.aas9315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller WW, Yafuso M, Yan CF, Hui HK, Arick S (1987) Performance of an in-vivo, continuous blood-gas monitor with disposable probe. Clin Chem 33(9):1538–1542

    Article  CAS  Google Scholar 

  12. Kocincova AS, Borisov SM, Krause C, Wolfbeis OS (2007) Fiber-optic microsensors for simultaneous sensing of oxygen and pH, and of oxygen and temperature. Anal Chem 79(22):8486–8493. https://doi.org/10.1021/ac070514h

    Article  CAS  PubMed  Google Scholar 

  13. Stich MIJ, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Sov Rev 39(8):3102–3114. https://doi.org/10.1039/B909635N

    Article  CAS  Google Scholar 

  14. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Sov Rev 44(14):4743–4768. https://doi.org/10.1039/C4CS00392F

    Article  CAS  Google Scholar 

  15. Du X, Yang L, Hu W, Wang R, Zhai J, Xie X (2018) A plasticizer-free miniaturized optical ion sensing platform with Ionophores and silicon-based particles. Anal Chem 90(9):5818–5824. https://doi.org/10.1021/acs.analchem.8b00360

    Article  CAS  PubMed  Google Scholar 

  16. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Sov Rev 42(22):8700–8732. https://doi.org/10.1039/C3CS60131E

    Article  CAS  Google Scholar 

  17. Wang XD, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42(19):7834–7869. https://doi.org/10.1039/c3cs60102a

    Article  CAS  PubMed  Google Scholar 

  18. Wolfbeis OS (2013) Probes, sensors, and labels: why is real progress slow? Angew Chem Int Ed Eng 52(38):9864–9865. https://doi.org/10.1002/anie.201305915

    Article  CAS  Google Scholar 

  19. Li Y-Y, Cheng H, Zhu J-L, Yuan L, Dai Y, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Temperature- and pH-sensitive multicolored micellar complexes. Adv Mater 21(23):2402–2406. https://doi.org/10.1002/adma.200803770

    Article  CAS  Google Scholar 

  20. Yin L, He C, Huang C, Zhu W, Wang X, Xu Y, Qian X (2012) A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells. Chem Commun (Camb) 48(37):4486–4488. https://doi.org/10.1039/c2cc30404j

    Article  CAS  Google Scholar 

  21. Wang X-d, Meier RJ, Wolfbeis OS (2012) A fluorophore-doped polymer nanomaterial for referenced imaging of pH and temperature with sub-micrometer resolution. Adv Funct Mater 22(20):4202–4207. https://doi.org/10.1002/adfm.201200813

    Article  CAS  Google Scholar 

  22. Huang H, Dong F, Tian Y (2016) Mitochondria-targeted Ratiometric fluorescent Nanosensor for simultaneous biosensing and imaging of O2(*-) and pH in live cells. Anal Chem 88(24):12294–12302. https://doi.org/10.1021/acs.analchem.6b03470

  23. Moorthy MS, Cho HJ, Yu EJ, Jung YS, Ha CS (2013) A modified mesoporous silica optical nanosensor for selective monitoring of multiple analytes in water. Chem Commun (Camb) 49(78):8758–8760. https://doi.org/10.1039/c3cc42513d

    Article  CAS  Google Scholar 

  24. Yang L, Li N, Pan W, Yu Z, Tang B (2015) Real-time imaging of mitochondrial hydrogen peroxide and pH fluctuations in living cells using a fluorescent nanosensor. Anal Chem 87(7):3678–3684. https://doi.org/10.1021/ac503975x

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Lu L, Li A, Tang J, Wang S, Xu S, Wang L (2015) Simultaneous detection of hydrogen peroxide and glucose in human serum with upconversion luminescence. Biosens Bioelectron 68:204–209. https://doi.org/10.1016/j.bios.2014.12.053

    Article  CAS  PubMed  Google Scholar 

  26. Stich MIJ, Schaeferling M, Wolfbeis OS (2009) Multicolor fluorescent and permeation-selective microbeads enable simultaneous sensing of pH, oxygen, and temperature. Adv Mater 21(21):2216–2220. https://doi.org/10.1002/adma.200803575

    Article  CAS  Google Scholar 

  27. Borisov SM, Seifner R, Klimant I (2011) A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature. Anal Bioanal Chem 400(8):2463–2474. https://doi.org/10.1007/s00216-010-4617-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S (2012) Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun 3:705–709. https://doi.org/10.1038/ncomms1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kucsko G, Maurer PC, Yao NY, Kubo M, Noh HJ, Lo PK, Park H, Lukin MD (2013) Nanometre-scale thermometry in a living cell. Nature 500:54. https://doi.org/10.1038/nature12373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eisele K, Gropeanu RA, Zehendner CM, Rouhanipour A, Ramanathan A, Mihov G, Koynov K, Kuhlmann CR, Vasudevan SG, Luhmann HJ, Weil T (2010) Fine-tuning DNA/albumin polyelectrolyte interactions to produce the efficient transfection agent cBSA-147. Biomaterials 31(33):8789–8801. https://doi.org/10.1016/j.biomaterials.2010.07.088

    Article  CAS  PubMed  Google Scholar 

  31. Yuzhou W, Susann I, Michaela F-B, Ling KS, Klaus E, Markus L, Yanran W, Christian B, Tanja W (2013) A Core–Shell albumin copolymer Nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Adv Healthcare Mater 2(6):884–894. https://doi.org/10.1002/adhm.201200296

    Article  CAS  Google Scholar 

  32. Amao Y, Okura I (2000) An oxygen sensing system based on the phosphorescence quenching of metalloporphyrin thin film on alumina plates. Analyst 125(9):1601–1604. https://doi.org/10.1039/b004065g

    Article  CAS  Google Scholar 

  33. Saito T, Asakura N, Kamachi T, Okura I (2007) Oxygen concentration imaging in a single living cell using phosphorescence lifetime of Pt-porphyrin. J Porphyrins Phthalocyanines 11(03):160–164. https://doi.org/10.1142/s1088424607000205

    Article  CAS  Google Scholar 

  34. Masaharu K, Norikazu T, Tomohiro H, Keisuke A, Kazuyuki N, Yutaka A (2004) Adsorptive pressure-sensitive coatings on porous anodized aluminium. Meas Sci Technol 15(3):489

    Article  Google Scholar 

  35. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543. https://doi.org/10.1038/nmat2442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21775029), the National Key R&D Program of China (2017YFC0906800), the Recruitment Program of Global Experts (1000 Talent program) in China, and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. TP2014004), which are greatly acknowledged. We thank Anqi Hu from Fudan University for the assistance of AFM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-dong Wang.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

The filter sets used for imaging four dyes inside HeLa cells; Lifetime measurement of the Eu clathrate in aqueous solution; Absorption and emission spectra of four dyes; Quantification of amino groups of BSA and cBSA; Emission spectra excited at 337 nm at different temperature; The emission spectra of the Eu clathrate at different pH; The influence of oxygen on the emission spectra of the Eu clathrate; The emission spectra of Rhodamine B at different pH; The influence of oxygen on the pH response of the triple nanosensor; The emission spectra of PtTCPP at different pH; Cell viability of HeLa cells co-cultured with nanosensors using CCK-8; Coomassie blue stained SDS-PAGE of BSA, cBSA and the triple nanosensor; The calibration plot of the nanosensor at different pH measured by fluorescent microscope.

ESM 1

(PDF 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xa., Zhang, W., Wang, Q. et al. Quadruply-labeled serum albumin as a biodegradable nanosensor for simultaneous fluorescence imaging of intracellular pH values, oxygen and temperature. Microchim Acta 186, 584 (2019). https://doi.org/10.1007/s00604-019-3674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3674-4

Keywords

Navigation