Skip to main content
Log in

Determination of trichloroethylene by using self-referenced SERS and gold-core/silver-shell nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A surface-enhanced Raman scattering (SERS) method has been developed to determine the concentration of trichloroethylene (TCE) in environmental water. Au-core/Ag-shell nanoparticles containing 4-mercaptophenylboronic acid (4-MPBA) between the core and shell are used as the SERS substrate. 4-MPBA serves as an internal reference with a Raman shift at 534 cm−1. TCE reacts with 4-mercaptopyridine (4-MPy) in a so-called Fujiwara reaction. With the presence of TCE in water, the consumption of 4-MPy results in a change in the intensity of its Raman signal at 1220 cm−1. The ratio of the Raman shift at 1220 cm−1 and 534 cm−1 decreases linearly in the 0.2 to 1.0 μM TCE concentration range, and the detection limit of TCE is as low as 8 ppb (60 nM). The method has been successfully applied to the determination of TCE in spiked lake water.

Gold-core/silver-shell nanoparticles with internal reference embedded have been fabracated to improve the quantitative measurement of SERS. These nanoparticles as SERS substrates, are used to indirectly quantify the concentration of trichloroethylene (a typical halogenated organic compound) by the consumption of 4-mercaptopyridine through the Fujiwara reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. 2015 Report on carcinogens: monograph on trichloroethylene, national toxicology program, national institute of environmental health sciences, U.S. department of health and human services. https://ntp.niehs.nih.gov/ntp/roc/monographs/finaltce_508.pdf. Accessed Oct 2016

  2. Erickson BE (2016) EPA moves to ban uses of trichloroethylene. C&EN News 94:20–21

    Google Scholar 

  3. Wilcox JD, Johnson KM (2016) Trichloroethylene (TCE) in tree cores to complement a subsurface investigation on residential property near a former electroplating facility. Environ Monit Assess 188:587–595

    Article  CAS  PubMed  Google Scholar 

  4. Chee GJ (2016) A novel whole-cell biosensor for the determination of trichloroethylene. Sensors Actuators B Chem 237:836–840

    Article  CAS  Google Scholar 

  5. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  6. Li J, Zhang Y, Ding S, Panneerselvam R, Tian Z (2017) Core − Shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069

    Article  CAS  Google Scholar 

  7. Wang Y, Yan B, Chen L (2013) SERS tags : novel optical Nanoprobes for bioanalysis. Chem Rev 113:1391–1428

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Zou Y, Liu F, Xu Y, Wang X, Li Y, Liang H, Chen L, Chen Z, Tan W (2016) Stable graphene-isolated-au-nanocrystal for accurate and rapid surface enhancement Raman scattering analysis. Anal Chem 88:10611–10616

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Wang Y, Wang W, Sun K, Chen L (2016) Reporter-embedded SERS tags from gold Nanorod seeds: selective immobilization of reporter molecules at the tip of Nanorods. ACS Appl Mater Interfaces 8:28105–28115

    Article  CAS  Google Scholar 

  10. Wei H, Vikesland PJ (2015) pH-triggered molecular alignment for reproducible SERS detection via an AuNP/Nanocellulose platform. Sci Rep 5:18131–18140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang S, Li Y, Huang H, Li P, Guo Z, Luo Q, Wang Z, Chu PK, Li J, Yu XF (2017) Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants. ACS Appl Mater Interfaces 9:7472–7480

    Article  CAS  PubMed  Google Scholar 

  12. Hu L, Liu YJ, Xu S, Li Z, Guo J, Gao S, Lu Z, Si H, Jiang S, Wang S (2017) Facile and low-cost fabrication of ag-cu substrates via replacement reaction for highly sensitive SERS applications. Chem Phys Lett 667:351–356

    Article  CAS  Google Scholar 

  13. Bontempi N, Carletti L, de Angelis C, Alessandri I (2016) Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces. Nanoscale 8:3226–3231

    Article  CAS  PubMed  Google Scholar 

  14. Kadasala NR, Wei A (2015) Trace detection of tetrabromobisphenol a by SERS with DMAP-modified magnetic gold nanoclusters. Nanoscale 7:10931–10935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang W (2016) Nanoshell-enhanced Raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing. ACS Appl Mater Interfaces 8:15591–15597

    Article  CAS  PubMed  Google Scholar 

  16. Zhang CY, Lu Y, Zhao B, Hao YW, Liu YQ (2016) Facile fabrication of ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate. Appl Surf Sci 377:167–173

    Article  CAS  Google Scholar 

  17. Liu J, Meng G, Li Z, Huang Z, Li X (2015) Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates. Nanoscale 7:18218–18224

    Article  CAS  PubMed  Google Scholar 

  18. Fu C, Wang Y, Chen G, Yang L, Xu S, Xu W (2015) Aptamer-based surface-enhanced Raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection. Anal Chem 87:9555–9558

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Yang G, Yang J, Han J, Liu J, Huang M (2016) Determination of melamine in milk using surface plasma effect of aggregated au@SiO2 nanoparticles by SERS technique. Food Control 68:14–19

    Article  CAS  Google Scholar 

  20. Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15:5301–5311

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Guo Y (2009) Surface-enhanced Raman scattering inside metal nanoshells. J Am Chem Soc 131:3808–3809

    Article  CAS  PubMed  Google Scholar 

  22. Lacy WB, Olson LG, Harris JM (1999) Quantitative SERS measurements on dielectric-overcoated silver-island films by solution-deposition control of surface concentration. Anal Chem 71:2564–2570

    Article  CAS  PubMed  Google Scholar 

  23. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  24. Sun L, Zhang M, Natarajan V, Yu X, Zhang X, Zhan J (2017) RSC advances internal reference promoted quantitative solid phase microextraction-surface enhanced Raman spectroscopy detection. RSC Adv 7:23866–23874

    Article  Google Scholar 

  25. Joshi P, Zhou Y, Ahmadov TO, Zhang P (2014) Quantitative SERS-based detection using ag-Fe3O4 nanocomposites with an internal reference. J Mater Chem C 2:9964–9968

    Article  CAS  Google Scholar 

  26. Zhou Y, Lee C, Zhang J, Zhang P (2013) Engineering versatile SERS-active nanoparticles by embedding reporters between au-core/ag-shell through layer-by-layer deposited polyelectrolytes. J Mater Chem C 1:3695–3699

    Article  CAS  Google Scholar 

  27. Zhou Y, Ding R, Joshi P, Zhang P (2015) Quantitative surface-enhanced Raman measurements with embedded internal reference. Anal Chim Acta 874:49–53

    Article  CAS  PubMed  Google Scholar 

  28. Ren W, Zhou Z, Irudayaraj JMK (2015) Trichloroethylene sensing in water based on SERS with multifunctional au/TiO2 core–shell nanocomposites. Analyst 140:6625–6630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uno T, Okumura K, Kuroda Y (1981) Mechanism of the Fujiwara reaction: structural investigation of reaction products from benzotrichloride. J Organomet Chem 46:3175–3178

    Article  CAS  Google Scholar 

  30. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  31. Seto TA, Schultze MO (1956) Determination of trichloroethylene, Trichloroacetic acid, and Trichloroethanol in urine. Anal Chem 28:1625–1629

    Article  CAS  Google Scholar 

  32. Parlak C, Ramasami P, Tursun M, Rhyman L, Kaya MF, Atar N, Alver Ö, Şenyel M (2015) 4-Mercaptophenylboronic acid: conformation, FT-IR, Raman, OH stretching and theoretical studies. Spectrochim Acta A Mol Biomol Spectrosc 144:131–138

    Article  CAS  PubMed  Google Scholar 

  33. Lou T, Wang Y, Li J, Peng H, Xiong H, Chen L (2011) Rapid detection of melamine with 4-mercaptopyridine-modified gold nanoparticles by surface-enhaced Raman scattering. Anal Bioanal Chem 401:333–338

    Article  CAS  PubMed  Google Scholar 

  34. Hnaien M, Bourigua S, Bessueille F, Bausells J, Errachid A, Lagarde F, Jaffrezic-Renault N (2011) Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection. Electrochim Acta 56:10353–10358

    Article  CAS  Google Scholar 

  35. Hnaien M, Lagarde F, Bausells J, Errachid A, Jaffrezic-Renault N (2011) A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture. Anal Bioanal Chem 400:1083–1092

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the US National Science Foundation (CBET-1065633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Smith, M.E., Zhang, J. et al. Determination of trichloroethylene by using self-referenced SERS and gold-core/silver-shell nanoparticles. Microchim Acta 185, 330 (2018). https://doi.org/10.1007/s00604-018-2870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2870-y

Keywords

Navigation