Skip to main content
Log in

Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) was modified with multi-walled carbon nanotubes (MWCNT) and silver nanoparticles (AgNPs) and applied to the simultaneous determination of hydroquinone (HQ), catechol (CC), bisphenol A (BPA) and phenol by using square-wave voltammetry. The MWCNTs were deposited on the GCE and the AgNPs were then electrodeposited onto the MWCNT/GCE by the application of 10 potential sweep cycles using an AgNP colloidal suspension. The modified GCE was characterized by using SEM, which confirmed the presence of the AgNPs. The electrochemical behavior of the material was evaluated by using cyclic voltammetry, and by electrochemical impedance spectroscopy that employed hexacyanoferrate as an electrochemical probe. The results were compared to the performance of the unmodified GCE. The modified electrode has a lower charge-transfer resistance and yields an increased signal. The peaks for HQ (0.30 V), CC (0.40 V), BPA (0.74 V) and phenol (0.83 V; all versus Ag/AgCl) are well separated under optimized conditions, which facilitates their simultaneous determination. The oxidation current increases linearly with the concentrations of HQ, CC, BPA and phenol. Detection limits are in the order of 1 μM for all 4 species, and the sensor is highly stable and reproducible. The electrode was successfully employed with the simultaneous determination of HQ, CC, BPA and phenol in spiked tap water samples.

A glassy carbon electrode was modified with carbon nanotubes and silver nanoparticles and then successfully applied to the simultaneous determination of four phenolic compounds. The sensor showed high sensitivity in the detection of hydroquinone, catechol, bisphenol A and phenol in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ummethala R, Wenger D, Tedde SF et al (2016) Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests. J Appl Phys 119:44302. https://doi.org/10.1063/1.4940418

    Article  Google Scholar 

  2. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060. https://doi.org/10.1016/j.electacta.2004.08.052

    Article  CAS  Google Scholar 

  3. Moraes FC, Cabral MF, Mascaro LH, Machado SAS (2011) The electrochemical effect of acid functionalisation of carbon nanotubes to be used in sensors development. Surf Sci 605:435–440. https://doi.org/10.1016/j.susc.2010.11.014

    Article  CAS  Google Scholar 

  4. Goulart LA, Mascaro LH (2016) GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol. Electrochim Acta. https://doi.org/10.1016/j.electacta.2016.02.174

  5. Zeng S, Yong K-T, Roy I et al (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506. https://doi.org/10.1007/s11468-011-9228-1

    Article  CAS  Google Scholar 

  6. Darvishi S, Karmizadeh F, Kharaziha M (2015) A facile one-step electrochemical synthesis of nickel nanoparticle/Graphene composites for non-enzymatic biosensor applications. Procedia Mater Sci 11:142–146. https://doi.org/10.1016/j.mspro.2015.11.006

    Article  CAS  Google Scholar 

  7. Jiang L, Gu S, Ding Y et al (2014) Facile and novel electrochemical preparation of a graphene–transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nano 6:207–214. https://doi.org/10.1039/C3NR03620K

    CAS  Google Scholar 

  8. Nantaphol S, Chailapakul O, Siangproh W (2015) Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum. Sensors Actuators B Chem 207:193–198. https://doi.org/10.1016/j.snb.2014.10.041

    Article  CAS  Google Scholar 

  9. Pagnanelli F, Altimari P, Bellagamba M et al (2015) Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology. Electrochim Acta 155:228–235. https://doi.org/10.1016/j.electacta.2014.12.112

    Article  CAS  Google Scholar 

  10. Ingerslev F, Vaclavik E, Halling-Sørensen B (2003) Pharmaceuticals and personal care products - a source of endocrine disruption in the environment? Pure Appl Chem. https://doi.org/10.1351/pac200375111881

  11. Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254–255:179–186. https://doi.org/10.1016/j.mce.2006.04.033

    Article  Google Scholar 

  12. Garoma T, Matsumoto SA, Wu Y, Klinger R (2010) Removal of bisphenol A and its reaction-intermediates from aqueous solution by ozonation. Ozone Sci Eng 32:338–343. https://doi.org/10.1080/01919512.2010.508484

    Article  CAS  Google Scholar 

  13. Lin T-M, Lee S-S, Lai C-S, Lin S-D (2006) Phenol burn. Burns 32:517–521. https://doi.org/10.1016/j.burns.2005.12.016

    Article  Google Scholar 

  14. Flickinger CW (1976) The benzenediols: catechol, resorcinol and hydroquinone — a review of the industrial toxicology and current industrial exposure limits. Am Ind Hyg Assoc J 37:596–606. https://doi.org/10.1080/0002889768507526

    Article  Google Scholar 

  15. Bakker E (2004) Electrochemical sensors. Anal Chem 76:3285–3298. https://doi.org/10.1021/ac049580z

    Article  CAS  Google Scholar 

  16. Hashemnia S, Khayatzadeh S, Hashemnia M (2012) Electrochemical detection of phenolic compounds using composite film of multiwall carbon nanotube/surfactant/tyrosinase on a carbon paste electrode. J Solid State Electrochem 16:473–479. https://doi.org/10.1007/s10008-011-1355-2

    Article  CAS  Google Scholar 

  17. Zhao G-H, Tang Y-T, Liu M-C et al (2007) Direct and simultaneous determination of phenol, hydroquinone and nitrophenol at boron-doped diamond film electrode. Chin J Chem 25:1445–1450. https://doi.org/10.1002/cjoc.200790267

    Article  CAS  Google Scholar 

  18. Ding Y-P, Liu W-L, Q-S W, Wang X-G (2005) Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J Electroanal Chem 575:275–280. https://doi.org/10.1016/j.jelechem.2004.09.020

    Article  CAS  Google Scholar 

  19. Zhang D, Peng Y, Qi H et al (2009) Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers. Sensors Actuators B Chem 136:113–121. https://doi.org/10.1016/j.snb.2008.11.010

    Article  CAS  Google Scholar 

  20. Anu Prathap MU, Satpati B, Srivastava R (2013) Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sensors Actuators B Chem 186:67–77. https://doi.org/10.1016/j.snb.2013.05.076

    Article  CAS  Google Scholar 

  21. Ma X, Liu Z, Qiu C et al (2013) Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite. Microchim Acta 180:461–468. https://doi.org/10.1007/s00604-013-0949-z

    Article  CAS  Google Scholar 

  22. Wang Y, Qu J, Li S et al (2015) Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine. Microchim Acta 182:2277–2283. https://doi.org/10.1007/s00604-015-1568-7

    Article  CAS  Google Scholar 

  23. Peng J, Feng Y, Han X-X, Gao Z-N (2016) Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. Microchim Acta 183:2289–2296. https://doi.org/10.1007/s00604-016-1865-9

    Article  CAS  Google Scholar 

  24. Campos AM, Raymundo-Pereira PA, Cincotto FH et al (2016) Sensitive determination of the endocrine disruptor bisphenol A at ultrathin film based on nanostructured hybrid material SiO2/GO/AgNP. J Solid State Electrochem 20:2503–2507. https://doi.org/10.1007/s10008-015-3098-y

    Article  CAS  Google Scholar 

  25. Yang L, Zhao H, Fan S et al (2014) A highly sensitive electrochemical sensor for simultaneous determination of hydroquinone and bisphenol A based on the ultrafine Pd nanoparticle@TiO2 functionalized SiC. Anal Chim Acta 852:28–36. https://doi.org/10.1016/j.aca.2014.08.037

    Article  CAS  Google Scholar 

  26. Committee AM (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112:199. https://doi.org/10.1039/an9871200199

    Article  Google Scholar 

  27. de Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524. https://doi.org/10.1016/j.jfoodeng.2011.10.030

    Article  Google Scholar 

  28. Goulart LA, de Moraes FC, Mascaro LH (2016) Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A. Mater Sci Eng C 58:768–773. https://doi.org/10.1016/j.msec.2015.09.073

    Article  CAS  Google Scholar 

  29. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192. https://doi.org/10.1002/smll.200400118

    Article  CAS  Google Scholar 

  30. Rawal R, Chawla S, Pundir CS (2011) Polyphenol biosensor based on laccase immobilized onto silver nanoparticles/multiwalled carbon nanotube/polyaniline gold electrode. Anal Biochem 419:196–204. https://doi.org/10.1016/j.ab.2011.07.028

    Article  CAS  Google Scholar 

  31. Van der Horst C, Silwana B, Iwuoha E, Somerset V (2015) Synthesis and characterization of bismuth-silver nanoparticles for electrochemical sensor applications. Anal Lett 48:1311–1332. https://doi.org/10.1080/00032719.2014.979357

    Article  Google Scholar 

  32. Nasirizadeh N, Ghaani M, Shekari Z, Shateri-Khalilabad M (2016) Novel non enzymatic TBHQ modified electrochemical sensor for hydrogen peroxide determination in different beverage samples. J Braz Chem Soc. https://doi.org/10.5935/0103-5053.20160037

  33. Negash N, Alemu H, Tessema M (2014) Flow injection amperometric determination of phenol and Chlorophenols at Single Wall carbon nanotube modified glassy carbon electrode. Am J Anal Chem 5:188–198. https://doi.org/10.4236/ajac.2014.53023

    Article  CAS  Google Scholar 

  34. Kolvenbach B, Schlaich N, Raoui Z et al (2007) Degradation pathway of bisphenol A: does ipso substitution apply to phenols containing a quaternary -carbon structure in the para position? Appl Environ Microbiol 73:4776–4784. https://doi.org/10.1128/AEM.00329-07

    Article  CAS  Google Scholar 

  35. Hu Z, Leung C-F, Tsang Y-K et al (2011) A recyclable polymer-supported ruthenium catalyst for the oxidative degradation of bisphenol A in water using hydrogen peroxide. New J Chem 35:149–155. https://doi.org/10.1039/C0NJ00583E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge #2012/20926-2 and #2013/07296-2 São Paulo Research Foundation (FAPESP), CNPq and CAPES for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Helena Mascaro.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic Supplementary material

ESM 1

(DOCX 2519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goulart, L.A., Gonçalves, R., Correa, A.A. et al. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Microchim Acta 185, 12 (2018). https://doi.org/10.1007/s00604-017-2540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2540-5

Keywords

Navigation