Skip to main content
Log in

Immunosensor for α-fetoprotein based on a glassy carbon electrode modified with electrochemically deposited N-doped graphene, gold nanoparticles and chitosan

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a voltammetric immunosensor with antibody immobilized on a glassy carbon electrode (GCE) modified with N-doped graphene (N-GS), electrodeposited gold nanoparticles (AuNPs) and chitosan (Chit). The preparation is simple and the thickness of the electrodeposited films can be well controlled. Due to the specific advantages of N-GS, AuNPs and Chit, the electrode has a large specific surface, improved conductivity, high stability. A new label-free immunosensor for the model antigen (alpha fetoprotein, AFP) detection was then designed by employing N-GS-AuNP-Chit as the antibody immobilization and signal amplification platform. Differential pulse voltammetry and electrochemical impedance spectroscopy were used for the characterization of the stepwise assembly process. Under the optimized conditions, at a typical working potential of +0.20 V (vs. SCE), and by using hexacyanoferrate as an electrochemical probe, the immunosensor has a detection limit as low as 1.6 pg mL−1 and a linear analytical range that extends from 5 pg mL−1 to 50 ng mL−1. AFP was quantified in spiked human serum samples with acceptable precision.

Schematic of sensitive and effective label-free electrochemical immunosensor for the detection of AFP based on N-GS-AuNP-Chit as signal amplification matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lin JH, He CY, Zhang LJ, Zhang SS (2009) Sensitive amperometric immunosensor for α-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Anal Biochem 384:130–135

    Article  CAS  Google Scholar 

  2. Cao Y, Yuan R, Chai Y, Mao L, Niu H, Liu H, Zhuo Y (2012) An ultrasensitive label-free electrochemical immunosensor based on signal amplification strategy of multifunctional magnetic graphene loaded with cadmium ions. Biosens Bioelectron 31:305–309

    Article  CAS  Google Scholar 

  3. Darwish IA, Wani TA, Alanazi AM, Hamidaddin MA, Zargar S (2013) Kinetic-exclusion analysis-based immunosensors versus enzyme-linked immunosorbent assays for measurement of cancer markers in biological specimens. Talanta 111:13–19

    Article  CAS  Google Scholar 

  4. Zhang S, Zhang C, Xing Z, Zhang X (2004) Simultaneous determination of alpha-fetoprotein and free beta-human chorionic gonadotropin by element-tagged immunoassay with detection by inductively coupled plasma mass spectrometry. Clin Chem 50:1214–1221

    Article  CAS  Google Scholar 

  5. Liu JF, Lin GH, Xiao C, Xue Y, Yang AK, Ren HX, Lu WS, Zhao H, Li XJ, Yuan ZB (2015) Sensitive electrochemical immunosensor for α-fetoprotein based on graphene/SnO2 /Au nanocomposite. Biosens Bioelectron 71:82–87

    Article  CAS  Google Scholar 

  6. Song ZJ, Yuan R, Chai YQ, Yin B, Fu P, Wang JF (2010) Multilayer structured amperometric immunosensor based on gold nanoparticles and Prussian blue nanoparticles/nanocomposite functionalized interface. Electrochim Acta 55:1778–1784

    Article  CAS  Google Scholar 

  7. Chen J, Tang JH, Yan F, Ju HX (2006) A gold nanoparticles/sol–gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials 27:2313–2321

    Article  CAS  Google Scholar 

  8. Zhou DD, Wang M, Dong J, Ai SY (2016) A Novel Electrochemical Immunosensor Based on Mesoporous Graphitic Carbon Nitride for Detection of Subgroup J of Avian Leukosis Viruses. Electrochim Acta 205:95–101

    Article  CAS  Google Scholar 

  9. Kavosi B, Hallaj R, Teymourian H, Salimi A (2014) Au nanoparticles/PAMAM dendrimer functionalized wired ethyleneamine-viologen as highly efficient interface for ultra-sensitive α-fetoprotein electrochemical immunosensor. Biosens Bioelectron 59:389–396

    Article  CAS  Google Scholar 

  10. Hu SQ, Xie JW, Xu QH, Rong KT, Shen GL, Yu RQ (2003) A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon. Talanta 61:769–777

    Article  CAS  Google Scholar 

  11. Jeong B, Akter R, Han OH, Rhee CK, Rahman MA (2013) Increased electrocatalyzed performance through dendrimer encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: highly sensitive electrochemical immunosensor for protein detection. Anal Chem 85:1784–1791

    Article  CAS  Google Scholar 

  12. Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184:969–979

    Article  CAS  Google Scholar 

  13. Stankovich S, Dikin DA, Dommett G, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  14. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. Microchim Acta 184:1–44

    Article  CAS  Google Scholar 

  15. Xin YC, Liu JG, Jie X, Liu WM, Liu FQ, Yin Y, Gu J, Zou ZG (2012) Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts. Electrochim Acta 60:354–358

    Article  CAS  Google Scholar 

  16. Fan HX, Li Y, Wu D, Ma HM, Mao KX, Fan DW, Du B, Li H, Wei Q (2012) Electrochemical bisphenol A sensor based on N-doped graphene sheets. Anal Chim Acta 711:24–28

    Article  CAS  Google Scholar 

  17. Gayathri CH, Mayuri P, Sankaran K, Kumar AS (2016) An electrochemical immunosensor for efficient detection of uropathogenic E. coli based on thionine dye immobilized chitosan/functionalized-MWCNT modified electrode. Biosens Bioelectron 82:71–77

    Article  CAS  Google Scholar 

  18. Gao X, Zhang YM, Wu Q, Chen H, Chen ZC, Lin XF (2011) One step electrochemically deposited nanocomposite film of chitosan-carbon nanotubes-gold nanoparticles for carcinoembryonic antigen immunosensor application. Talanta 85:1980–1985

    Article  CAS  Google Scholar 

  19. Feng D, Wang F, Chen ZL (2009) Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens Actuators B: Chem 138:539–544

    Article  CAS  Google Scholar 

  20. Du D, Ding JW, Cai J, Zhang AD (2007) One-step electrochemically deposited interface of chitosan-gold nanoparticles for acetylcholinesterase biosensor design. J Electroanal Chem 605:53–60

    Article  CAS  Google Scholar 

  21. Lu ZZ, Yang SL, Yang Q, Luo SL, Liu CB, Tang YH (2013) A glassy carbon electrode modified with graphene, gold nanoparticles and chitosan for ultrasensitive determination of lead (II). Microchim Acta 180:555–562

    Article  CAS  Google Scholar 

  22. Hassan S, Suzuki M, El-Moneim AA (2014) Synthesis of MnO2-chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application. J Power Sources 246:68–73

    Article  CAS  Google Scholar 

  23. Qiu JD, Liang RP, Wang R, Fan LX, Chen YW, Xia XH (2009) A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosens Bioelectron 25:852–857

    Article  CAS  Google Scholar 

  24. Long DH, Li W, Ling LC, Miyawaki J, Mochida I, Yoon SH (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102

    Article  CAS  Google Scholar 

  25. Mani V, Chikkaveeraiah BV, Patel V, Gutkind JS, Rusling JF (2009) Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 3:585–594

    Article  CAS  Google Scholar 

  26. Tang J, Zhou J, Li QF, Tang DP, Chen GN, Yang HH (2013) In situ amplified electronic signal for determination of low-abundance proteins coupling with nanocatalyst-based redox cycling. Chem Commun 49:1530–1532

    Article  CAS  Google Scholar 

  27. Yang GH, Li LL, Rana RK, Zhu JJ (2013) Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon 61:357–366

    Article  CAS  Google Scholar 

  28. Liu Y, Yan K, Okoth OK, Zhang JD (2015) A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. Biosens Bioelectron 74:1016–1021

    Article  CAS  Google Scholar 

  29. Xue Y, Zhao H, Xu ZJ, Li XJ, He YJ, Yuan ZB (2011) The comparison of different gold nanoparticles/graphene nanosheets hybrid nanocomposites in electrochemical performance and the construction of a sensitive uric acid electrochemical sensor with novel hybrid nanocomposites. Biosens Bioelectron 29:102–108

    Article  CAS  Google Scholar 

  30. Wang XH, Han QS, Yu N, Li JY, Yang L, Yang R, Wang C (2015) Aptamer-conjugated graphene oxide-gold nanocomposites for targeted chemo-photothermal therapy of cancer cells. J Mater Chem B 3:4036–4042

    Article  CAS  Google Scholar 

  31. Chen J, Yan F, Du D, Wu J, Ju HX (2006) Electrochemical Immunoassay of Human Chorionic Gonadotrophin Based on Its Immobilization in Gold Nanoparticles-Chitosan Membrane. Electroanalysis 18:670–676

    Article  CAS  Google Scholar 

  32. Li F, Chen W, Tang CF, Zhang SS (2009) Development of hydrogen peroxide biosensor based on in situ covalent immobilization of horseradish peroxidase by one-pot polysaccharide-incorporated sol–gel process. Talanta 77:1304–1308

    Article  CAS  Google Scholar 

  33. Liang RP, Wang ZX, Zhang L, Qiu JD (2012) A label-free amperometric immunosensor for alpha-fetoprotein determination based on highly ordered porous multi-walled carbon nanotubes/silica nanoparticles array platform. Sens Actuators B: Chem 16167:569–575

    Article  Google Scholar 

  34. Lin JH, Wei ZJ, Zhang HH, Shao MJ (2013) Sensitive immunosensor for the label-free determination of tumor marker based on carbon nanotubes/mesoporous silica and graphene modified electrode. Biosens Bioelectron 41:342–347

    Article  CAS  Google Scholar 

  35. Zhao LF, Li SJ, He J, Tian GH, Wei Q, Li H (2013) Enzyme-free electrochemical immunosensor configured with Au-Pd nanocrystals and N-doped graphene sheets for sensitive detection of AFP. Biosens Bioelectron 49:222–225

    Article  CAS  Google Scholar 

  36. Liu JF, Lin GH, Xiao C, Xue Y, Yang AK, Ren HX, Lu WS, Zhao H, Li XJ, Yuan ZB (2015) Sensitive electrochemical immunosensor for α-fetoprotein based on graphene/SnO2/Au nanocomposite. Biosens Bioelectron 71:82–87

    Article  CAS  Google Scholar 

  37. Wang H, Li H, Zhang YH, Wei Q, Ma HM, Wu D, Li Y, Zhang Y, Du B (2014) Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein. Biosens Bioelectron 53:305–309

    Article  CAS  Google Scholar 

  38. Wei Q, Mao KX, Wu D, Dai YX, Yang J, Du B, Yang MH, Li H (2010) A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite. Sens Actuators B: Chem 149:314–318

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (21665010, 51572117 and 51302117), the outstanding youth fund and 5511 Project of Jiangxi Province (20162BCB23027), Jiangxi Provincial, Department of Education (GJJ12595), Natural Science Foundation of Jiangxi Province (20171BAB203015, 20151BAB203018), Postdoctoral Science Foundation of Jiangxi Province (2014KY14), State Key Laboratory of Chemical Biosensing & Chemometrics (2015010) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingkun Xu or Limin Lu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 9920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Yang, T., Zuo, Y. et al. Immunosensor for α-fetoprotein based on a glassy carbon electrode modified with electrochemically deposited N-doped graphene, gold nanoparticles and chitosan. Microchim Acta 184, 3747–3753 (2017). https://doi.org/10.1007/s00604-017-2407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2407-9

Keywords

Navigation