Skip to main content
Log in

Ultrafine α-Fe2O3 nanocrystals anchored on N-doped graphene: a nanomaterial with long hole diffusion length and efficient visible light-excited charge separation for use in photoelectrochemical sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors have coupled ultrafine α-Fe2O3 nanocrystals to N-doped graphene (NG) to obtain a novel material for use in a photoelectrode. The presence of NG is shown to strongly affect the morphology and size of the α-Fe2O3 nanocrystals formed on the NG sheets, and to improve their photoelectrochemical (PEC) activity. Interestingly, the PEC performance of the nanocomposite is closely correlated to the size of the α-Fe2O3 nanocrystals in that small nanocrystals display better PEC properties. The photocurrent of α-Fe2O3-NG is nearly 3.3-fold stronger than that of α-Fe2O3 nanocrystals. Based on the remarkable PEC performance of this nanocomposite, a PEC sensor was constructed for the sensitive determination of 1,4-dihydroxybenzene (HQ). Its photocurrent increases with the HQ concentration in the range from 3.0 nM to 3.3 μM, and the detection limit is 1.0 nM (at an S/N ratio of 3). In our perception, the study presented here can serve as a basis for a better understanding of the relationship between morphologies and PEC performance of such nanomaterials. Conceivably, it may be extended to other PEC sensing system and to other fields associated with nanotechnology.

Ultrafine α-Fe2O3 nanocrystals were prepared via coupling with N-doped graphene (NG) substances (α-Fe2O3-NG). They exhibit superior photoelectrochemical (PEC) performance and have been successfully utilized for PEC-based sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Wang YL, Wang TY, Da PM, Xu M, Wu H, Zheng GF (2013) Silicon nanowires for biosensing, energy storage, and conversion. Adv Mater 25:5177

    Article  CAS  Google Scholar 

  2. Zhang L, Sun Y, Liang YY, He JP, Zhao WW, Xu JJ, Chen HY (2016) Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis. Biosens Bioelectron 85:930

    Article  CAS  Google Scholar 

  3. Wang M, Yang ZQ, Guo YL, Wang XX, Yin HS, Ai SY (2015) Visible-light induced photoelectrochemical biosensor for the detection of microRNA based on Bi2S3 nanorods and streptavidin on an ITO electrode. Microchim Acta 182:241

    Article  CAS  Google Scholar 

  4. Song J, Wang JM, Wang XY, Zhao W, Zhao YQ, Wu S, Gao ZM, Yuan JL, Meng CG (2016) Using silver nanocluster/graphene nanocomposite to enhance photoelectrochemical activity of CdS:Mn/TiO2 for highly sensitive signal-on immunoassay. Biosens Bioelectron 80:614

    Article  CAS  Google Scholar 

  5. Xi XG, Li J, Wang HM, Zhao Q, Li HB (2015) Non-enzymatic photoelectrochemical sensing of hydrogen peroxide using hierarchically structured zinc oxide hybridized with graphite-like carbon nitride. Microchim Acta 182:1273

    Article  CAS  Google Scholar 

  6. Jin DQ, Xu Q, Yu LY, Hu XY (2015) Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125(Ti)/TiO2. Microchim Acta 182:1885

    Article  CAS  Google Scholar 

  7. Wang K, Wu J, Liu Q, Jin YC, Yan JJ, Cai JR (2012) Ultrasensitive photoelectrochemical sensing of nicotinamide adenine dinucleotide based on graphene-TiO2 nanohybrids under visible irradiation. Anal Chim Acta 745:131

    Article  CAS  Google Scholar 

  8. Lee CT, Chiu YS, Ho SC, Lee YJ (2011) Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor. Sensors 11:4648

    Article  Google Scholar 

  9. Wang GL, Xu JJ, Chen HY (2010) Selective detection of trace amount of Cu2+ using semiconductor nanoparticles in photoelectrochemical analysis. Nanoscale 2:1112

    Article  CAS  Google Scholar 

  10. Huo HH, Xu ZD, Zhang T, Xu CL (2015) Ni/CdS/TiO2 nanotube array heterostructures for high performance photoelectrochemical biosensing. J Mater Chem A 3:5882

    Article  CAS  Google Scholar 

  11. Hsu YK, Chen YC, Lin YG (2015) Novel ZnO/Fe2O3 core-shell nanowires for photoelectrochemical water splitting. ACS Appl Mater Interfaces 7:14157

    Article  CAS  Google Scholar 

  12. Sivula K, Formal FL, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chem Sus Chem 4:432

    Article  CAS  Google Scholar 

  13. Ling YC, Wang GM, Wheeler DA, Zhang JZ, Li Y (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119

    Article  CAS  Google Scholar 

  14. Zhang LL, Bao ZW, Yu XX, Dai P, Zhu J, Wu MZ, Li G, Liu XS, Sun ZQ, Chen CL (2016) Rational design of α-Fe2O3/reduced graphene oxide composites: rapid detection and effective removal of organic pollutants. ACS Appl Mater Interfaces 8:6431

    Article  CAS  Google Scholar 

  15. Liu SX, Zheng LX, Yu PP, Han SC, Fang XS (2016) Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances. Adv Funct Mater 26:3331

    Article  CAS  Google Scholar 

  16. Sivula K, Zboril R, Formal LF, Robert R, Weidenkaff A, Tucek J, Frydrych J, Grätzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436

    Article  CAS  Google Scholar 

  17. Lightcap IV, Kamat PV (2012) Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion. J Am Chem Soc 134:7109

    Article  CAS  Google Scholar 

  18. Lin YJ, Yuan GB, Sheehan S, Zhou S, Wang DW (2011) Hematite-based solar water splitting: challenges and opportunities. Energy Environ Sci 4:4862

    Article  CAS  Google Scholar 

  19. Hu T, Xie M, Zhong J, Sun HT, Sun X, Scott S, George SM, Liu CS, Lian J (2014) Porous Fe2O3 nanorods anchored on nitrogen-doped graphenes and ultrathin Al2O3 coating by atomic layer deposition for long-lived lithium ion battery anode. Carbon 76:141

    Article  CAS  Google Scholar 

  20. Jiang D, Du XJ, Liu Q, Zhou L, Qian J, Wang K (2015) One-step thermal-treatment route to fabricate well-dispersed ZnO nanocrystals on nitrogen-doped graphene for enhanced electrochemiluminescence and ultrasensitive detection of pentachlorophenol. ACS Appl Mater Interfaces 7:3093

    Article  CAS  Google Scholar 

  21. Li J, Liu CY, Cheng C (2011) Electrochemical detection of hydroquinone by graphene and Pt-graphene hybrid material synthesized through a microwave-assisted chemical reduction process. Electrochim Acta 56:2712

    Article  CAS  Google Scholar 

  22. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  23. Mayavan S, Sim JB, Choi SM (2012) Easy synthesis of nitrogen-doped graphene-silver nanoparticle hybrids by thermal treatment of graphite oxide with glycine and silver nitrate. Carbon 50:5148

    Article  CAS  Google Scholar 

  24. Liang HF, Chen W, Jiang XD, Xu X, Xu BB, Wang ZC (2014) Synthesis of 2D hollow hematite microplatelets with tuneable porosity and their comparative photocatalytic activities. J Mater Chem A 2:4340

    Article  CAS  Google Scholar 

  25. Guo BD, Liu Q, Chen E, Zhu HW, Fang L, Gong JR (2010) Controllable N-doping of graphene. Nano Lett 10:4975

    Article  CAS  Google Scholar 

  26. Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) Electrochemistry and photoelectrochemistry of iron(III) oxide. J Chem Soc Faraday Trans 79:2027

    Article  CAS  Google Scholar 

  27. Qian J, Yang ZT, Wang CQ, Wang K, Liu Q, Jiang D, Yan YT, Wang K (2015) One-pot synthesis of BiPO4 functionalized reduced graphene oxide with enhanced photoelectrochemical performance for selective and sensitive detection of chlorpyrifos. J Mater Chem A 3:13671

    Article  CAS  Google Scholar 

  28. Xu L, Xia JX, Wang LG, Qian J, Li HM, Wang K (2014) α-Fe2O3 cubes with high visible-light-activated photoelectrochemical activity towards glucose: hydrothermal synthesis assisted by a hydrophobic ionic liquid. Chem Eur J 20:2244

    Article  CAS  Google Scholar 

  29. Mahadik MA, Shinde PS, Cho M, Jang JS (2015) Fabrication of a ternary CdS/ZnIn2S4/TiO2 heterojunction for enhancing photoelectrochemical performance: effect of cascading electron-hole transfer. J Mater Chem A 3:23597

    Article  CAS  Google Scholar 

  30. Jiang D, Liu Q, Wang K, Qian J, Dong XY, Yang ZT, Du XJ, Qiu BJ (2014) Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens Bioelectron 54:273

    Article  CAS  Google Scholar 

  31. Li HB, Li J, Xu Q, Hu XY (2011) Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos. Anal Chem 83:9681

    Article  CAS  Google Scholar 

  32. Zhang XY, Xu F, Zhao BQ, Ji X, Yao YW, Wu DP, Gao ZY, Jiang K (2014) Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose. Electrochim Acta 133:615

    Article  CAS  Google Scholar 

  33. Hu YQ, Xue ZH, He HX, Ai RX, Liu XH, Lu XQ (2013) Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene. Biosens Bioelectron 47:45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21375050, 21505055 and 21675066), the Natural Science Foundation of Jiangsu province (No. BK20150486), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. PAPD-2014-37), Qing Lan Project and Innovation Project of Science and Technology for Graduates of Jiangsu University (No. KYLX16_0907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Liming Dai and Xiaojiao Du contributed equally to this work.

Electronic supplementary material

ESM 1

(DOC 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Du, X., Jiang, D. et al. Ultrafine α-Fe2O3 nanocrystals anchored on N-doped graphene: a nanomaterial with long hole diffusion length and efficient visible light-excited charge separation for use in photoelectrochemical sensing. Microchim Acta 184, 137–145 (2017). https://doi.org/10.1007/s00604-016-1989-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1989-y

Keywords

Navigation