Skip to main content
Log in

Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Negatively charged carboxylated nanocrystalline cellulose (CNCC) and positively charged poly(diallyldimethyl ammonium chloride) (PDDA) were alternatingly assembled on the surface of a glassy carbon electrode to form a relatively uniform polyelectrolyte multilayer nanocomposite (CNCC/PDDA)n. It was then incorporated into a matrix of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on the surface of the electrode. The nanocomposites were prepared in various ratios of PEDOT and (CNCC/PDDA), and then characterized by transmission electron microscopy, scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry. The PEDOT/(CNCC/PDDA)4 nanocomposite showed the lowest electrochemical impedance and best electrocatalytic activity towards the oxidation of nitrite. Based on these findings, an amperometric sensor was developed which, if operated at 0.80 V (vs. SCE), can detect nitrite in the 0.2 μM to 1.73 mM concentration range with a 57 nM detection limit.

Carboxylated nanocrystalline cellulose (CNCC) and poly(diallyldimethyl ammonium chloride) (PDDA) were assembled to nanocomposite (CNCC/PDDA)n. Poly(3,4-ethylenedioxythiophene (PEDOT) was electrodeposited on the surface of (CNCC/PDDA)n and a sensitive amperometric sensor for detection of nitrite was developed based on PEDOT/(CNCC/PDDA)n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Castro-Guerrero CF, Gray DG (2014) Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21(4):2567–2577

    Article  CAS  Google Scholar 

  2. Yang H, Alam MN, van de Ven TGM (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20(4):1865–1875

    Article  CAS  Google Scholar 

  3. Yang H, Tejado A, Alam N, Antal M, van de Ven TG (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28(20):7834–7842

    Article  CAS  Google Scholar 

  4. Matos Ruiz M, Cavaille JY, Dufresne A, Gerard JF, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos. Interfaces 7(2):117–131

    Article  Google Scholar 

  5. de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787

    Article  Google Scholar 

  6. Mahmoud KA, Male KB, Hrapovic S, Luong JHT (2009) Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS Appl Mater Interfaces 1(7):1383–1386

    Article  CAS  Google Scholar 

  7. Dong SP, Roman M (2007) Fluorescently Labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129(45):13810–13811

    Article  CAS  Google Scholar 

  8. Padalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26(11):8497–8502

    Article  CAS  Google Scholar 

  9. Lam E, Leung ACW, Liu Y, Majid E, Hrapovic S, Male KB, Luong JHT (2012) Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustain Chem Eng 1(2):278–283

    Article  Google Scholar 

  10. Leung CW, Luong JHT, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud K, Rho D (2010) Cellulose nanocrystal from renewable biomass. National Research Council of Canada, Canada, CA 000372

  11. Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3):302–305

    Article  CAS  Google Scholar 

  12. Fan JS, Shao W, Xu GY, Cui XT, Luo XL (2014) Preparation and electrochemical catalytic application of nanocrystalline cellulose doped poly (3, 4-ethylenedioxythiophene) conducting polymer nanocomposites. RSC Adv 4(46):24328–24333

    Article  CAS  Google Scholar 

  13. Roncali J, Blanchard P, Frère P (2005) 3, 4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J Mater Chem 15(16):1589–1610

    Article  CAS  Google Scholar 

  14. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494

    Article  CAS  Google Scholar 

  15. Luo XL, Weaver CL, Zhou DD, Greenberg R, Cui XT (2011) Highly stable carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32(24):5551–5557

    Article  CAS  Google Scholar 

  16. Letaïef S, Aranda P, Fernández-Saavedra R, Margeson JCJ, Detellier C, Ruiz-Hitzky E (2008) Poly (3, 4-ethylenedioxythiophene)-clay nanocomposites. J Mater Chem 18(19):2227–2233

    Article  Google Scholar 

  17. Xu GY, Li BB, Cui XT, Ling LY, Luo XL (2013) Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid. Sens. Actuators B: Chem. 188:405–410

    Article  CAS  Google Scholar 

  18. Tung TT, Castro M, Feller JF, Kim TY, Suh KS (2013) Hybrid film of chemically modified graphene and vapor-phase-polymerized PEDOT for electronic nose applications. Org Electron 14(11):2789–2794

    Article  CAS  Google Scholar 

  19. Lu LM, Zhang O, Xu JK, Wen YP, Duan XM, Yu HM, Wu LP, Nie T (2013) A facile one-step redox route for the synthesis of graphene/poly (3, 4-ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sens. Actuators B: Chem. 181:567–574

    Article  CAS  Google Scholar 

  20. He J, Duffy NW, Pringle JM, Cheng YB (2013) Conducting polymer and titanium carbide-based nanocomposites as efficient counter electrodes for dye-sensitized solar cells. Electrochim Acta 105:275–281

    Article  CAS  Google Scholar 

  21. Huang SS, Liu L, Mei LP, Zhou JY, Guo FY, Wang AJ, Feng JJ (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791–797

    Article  CAS  Google Scholar 

  22. Wang JP, Zhou HY, Fan DW, Zhao DY, Xu CX (2015) A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta 182(5–6):1055–1061

    Article  CAS  Google Scholar 

  23. Pandikumar A, Yusoff N, Huang NM, Lim HN (2015) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182(5–6):1113–1122

    Google Scholar 

  24. Dang XP, Hu H, Wang SF, Hu SS (2015) Nanomaterials-based electrochemical sensors for nitric oxide. Microchim Acta 182(3–4):455–467

    Article  CAS  Google Scholar 

  25. Liu WL, Zhang JF, Li C, Tang L, Zhang ZQ, Yang M (2013) A novel composite film derived from cysteic acid and PDDA-functionalized graphene: enhanced sensing material for electrochemical determination of metronidazole. Talanta 104:204–211

    Article  CAS  Google Scholar 

  26. Lam E, Hrapovic S, Majid E, Chong JH, Luong JHT (2012) Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4(3):997–1002

    Article  CAS  Google Scholar 

  27. Luo XL, Killard AJ, Smyth MR (2007) Nanocomposite and nanoporous polyaniline conducting polymers exhibit enhanced catalysis of nitrite reduction. Chem Eur J 13(7):2138–2143

    Article  CAS  Google Scholar 

  28. Singh J, Roychoudhury A, Srivastava M, Chaudhary V, Prasanna R, Lee DW, Malhotra BD (2013) Highly efficient bienzyme functionalized biocompatible nanostructured nickel ferrite-chitosan nanocomposite platform for biomedical application. J Phys Chem C 117(16):8491–8502

    Article  CAS  Google Scholar 

  29. Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE (2013) Label-free detection of cardiac troponin-i using carbon nanofiber based nanoelectrode arrays. Anal Chem 85(8):3858–3863

    Article  CAS  Google Scholar 

  30. Hu FX, Chen SH, Wang CY, Yuan R, Yuan DH, Wang C (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46

    Article  CAS  Google Scholar 

  31. Yang SL, Zeng XD, Liu XY, Wei WZ, Luo SL, Liu Y, Liu YQ (2010) Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode. J Electroanal Chem 639(1):181–186

    Article  CAS  Google Scholar 

  32. Zhang O, Wen YP, Xu JK, Lu LM, Duan XM, Yu HM (2013) One-step synthesis of poly (3, 4-ethylenedioxythiophene)–Au composites and their application for the detection of nitrite. Synth Met 164:47–51

    Article  CAS  Google Scholar 

  33. Liu H, Duan CY, Yang CH, Shen WQ, Wang F, Zhu ZF (2015) A novel nitrite biosensorbased on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens. Actuators B: Chem. 218:60–66

    Article  CAS  Google Scholar 

  34. Li SJ, Zhao GY, Zhang RX, Hou YL, Liu L, Pang H (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180(9–10):821–827

    Article  CAS  Google Scholar 

  35. Rajesh S, Kanugula AK, Bhargava K, Ilavazhagan G, Kotamraju S, Karunakaran C (2010) Simultaneous electrochemical determination of superoxide anion radical and nitrite using Cu, ZnSOD immobilized on carbon nanotube in polypyrrole matrix. Biosens. Bioelectron. 26(2):689–695

    Article  CAS  Google Scholar 

  36. Meng ZC, Zheng JB, Li QD (2015) A nitrite electrochemical sensor based on electrodeposition of zirconium dioxide nanoparticles on carbon nanotubes modified electrode. J Iran Chem Soc 12(6):1053–1060

    Article  CAS  Google Scholar 

  37. Wang JJ, Xu GY, Wang W, Xu SH, Luo XL (2015) Nitrite oxidation with copper–cobalt nanoparticles on carbon nanotubes doped conducting polymer PEDOT composite. Chem Asian J 10(9):1892–1897

    Article  CAS  Google Scholar 

  38. Cui L, Zhu JY, Meng XM, Yin HS, Pan XP, Ai SY (2012) Controlled chitosan coated Prussian blue nanoparticles with the mixture of graphene nanosheets and carbon nanoshperes as a redox mediator for the electrochemical oxidation of nitrite. Sens. Actuators B: Chem. 161(1):641–647

    Article  CAS  Google Scholar 

  39. Zhuang RR, Jian FF, Wang KF (2011) Two new manganese (II) complexes bulk-modified carbon paste electrodes: preparation and electrocatalytic activities. J Iran Chem Soc 8(2):388–395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (21422504 and 21275087), the Natural Science Foundation of Shandong Province of China (JQ201406), the Taishan Scholar Program of Shandong Province of China and the Domestic Visiting Scholar Program of Shandong Province of China for Young Backbone Teachers of Colleges and Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Luo.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

ESM 1

(DOCX 1415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Liang, S., Fan, J. et al. Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host. Microchim Acta 183, 2031–2037 (2016). https://doi.org/10.1007/s00604-016-1842-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1842-3

Keywords

Navigation