Skip to main content
Log in

Size-controlled sensitivity and selectivity for the fluorometric detection of Ag+ by homocysteine capped CdTe quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have synthesized water dispersible CdTe quantum dots (QDs) in different sizes and with various capping reagents, and have studied the effects of their size on the sensitivity and selectivity in the fluorometric determination of metal ions, particularly of silver(I). It is found that an increase in the particle size of homocysteine-capped CdTe QDs from 1.7 nm to 3.3 nm and to 3.7 nm enhances both the sensitivity and selectivity of the determination of Ag(I) to give an ultimate limit of detection as low as 8.3 nM. This effect can partially be explained by the better passivation of surface traps on smaller sized QDs via adsorption of Ag(I), thereby decreasing the apparent detection efficiency. In addition, the presence of CdS in the CdTe QDs is likely to play a role. The study demonstrates that an improvement in sensing performance is accomplished by using QDs of fine-tuned particle sizes. Such effects are likely also to occur with other QD-based optical probes.

Improvement of sensing performance by the use of quantum dots based fluorescent probes can be achieved through tuning their particle sizes and should be considered as an important factor in developing relevant probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111(5):3433–3458. doi:10.1021/cr100383r

    Article  CAS  Google Scholar 

  2. Chan J, Dodani SC, Chang CJ (2012) Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 4(12):973–984. doi:10.1038/nchem.1500

    Article  CAS  Google Scholar 

  3. Cheng X, Li S, Jia H, Zhong A, Zhong C, Feng J, Qin J, Li J (2012) Fluorescent and colorimetric probes for mercury(II): tunable structures of electron donor and p-conjugated bridge. Chem Eur J 18(6):1691–1699. doi:10.1002/chem.201102376

    Article  CAS  Google Scholar 

  4. Li DH, Shen JS, Chen N, Ruan YB, Jiang YB (2011) A ratiometric luminescent sensing of Ag+ ion via in situ formation of coordination. Chem Commun 47(20):5900–5902. doi:10.1039/c0cc05519k

    Article  CAS  Google Scholar 

  5. Yang RH, Chan WH, Lee AWM, Xia PF, Zhang HK, Li KA (2003) A ratiometric fluorescent sensor for Ag + with high selectivity and sensitivity. J Am Chem Soc 125(10):2884–2885. doi:10.1021/ja029253d

    Article  CAS  Google Scholar 

  6. Jang S, Thirupathi P, Neupane LN, Seong J, Lee H, Lee WI, Lee KH (2012) Highly sensitive ratiometric fluorescent chemosensor for silver Ion and silver nanoparticles in aqueous solution. Org Lett 14(18):4746–4749. doi:10.1021/ol301991h

    Article  CAS  Google Scholar 

  7. Merian E (1991) Metals and their compounds in the environment: occurrence. Analysis and Biological Relevance, VCH, New York

    Google Scholar 

  8. Poznyak SK, Osipovich NP, Shavel A, Talapin DV, Gao MY, Eychmuller A, Gaponik N (2005) Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution. J Phys Chem B 109(3):1094–1100. doi:10.1021/jp0460801

    Article  CAS  Google Scholar 

  9. Zhang J, Zhang X, Zhang JY (2009) Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals. J Phys Chem C 113(22):9512–9515. doi:10.1021/jp9026354

    Article  CAS  Google Scholar 

  10. Masumoto Y, Sonobe K (1997) Size-dependent energy levels of CdTe quantum dots. Phys Rev B 56(15):9734–9737. doi:10.1103/PhysRevB.56.9734

    Article  CAS  Google Scholar 

  11. Qian H, Li L, Ren J (2005) One-step and rapid synthesis of high quality alloyed quantum dots (CdSe–CdS) in aqueous phase by microwave irradiation with controllable temperature. Mater Res Bull 40(10):1726–1736. doi:10.1016/j.materresbull.2005.05.022

    Article  CAS  Google Scholar 

  12. Ma Q, Su X (2011) Recent advances and applications in QDs-based sensors. Analyst 136(23):4883–4893. doi:10.1039/c1an15741h

    Article  CAS  Google Scholar 

  13. Ali EM, Zheng Y, Yu HH, Ying JY (2007) Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem 79(24):9452–9458. doi:10.1021/ac071074x

    Article  CAS  Google Scholar 

  14. Gan TT, Zhang YJ, Zhao NJ, Xiao X, Yin GF, Yu SH, Wang HB, Duan JB, Shi CY, Liu WQ (2012) Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag+. Spectrochim Acta A 99:62–68. doi:10.1016/j.saa.2012.09.005

    Article  CAS  Google Scholar 

  15. Xia YS, Zhu CQ (2008) Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta 75(1):215–221. doi:10.1016/j.talanta.2007.11.008

    CAS  Google Scholar 

  16. Zhu X, Zhao Z, Chi X, Gao J (2013) Facile, sensitive, and ratiometric detection of mercuric ions using GSH-capped semiconductor quantum dots. Analyst 138(11):3230–3237. doi:10.1039/c3an00011g

    Article  CAS  Google Scholar 

  17. Zhang K, Yu Y, Sun S (2013) Facile synthesis l-cysteine capped CdS:Eu quantum dots and their Hg2+ sensitive properties. Appl Surf Sci 276:333–339. doi:10.1016/j.apsusc.2013.03.093

    Article  CAS  Google Scholar 

  18. Mahmoud WE (2012) Functionalized ME-capped CdSe quantum dots based luminescence probe for detection of Ba2+ ions. Sens Actuat B-chem 164(1):76–81. doi:10.1016/j.snb.2012.01.073

    Article  CAS  Google Scholar 

  19. Pei J, Zhu H, Wang X, Zhang H, Yang X (2012) Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection. Anal Chim Acta 757:63–68. doi:10.1016/j.aca.2012.10.037

    Article  CAS  Google Scholar 

  20. Duan J, Jiang X, Ni S, Yang M, Zhan J (2011) Facile synthesis of N-acetyl-L-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+. Talanta 85(4):1738–1743. doi:10.1016/j.talanta.2011.06.071

    Article  CAS  Google Scholar 

  21. Dong YP, Huang L, Tong BH, Shi MJ, Zhang WB, Zhang QF (2012) Enhancing and inhibiting effects of benzenediols on chemiluminescence of a novel cyclometallated iridium(III) complex. Luminescence 27(4):262–267. doi:10.1002/bio.1343

    Article  CAS  Google Scholar 

  22. Laferriere M, Galian RE, Maurel V, Scaiano JC (2006) Non-linear effects in the quenching of fluorescent quantum dolts by nitroxyl free radicals. Chem Commun 42(3):257–259. doi:10.1039/b511515a

    Article  Google Scholar 

  23. Xia YS, Cao C, Zhu CQ (2008) Two distinct photoluminescence responses of CdTe quantum dots to Ag (I). J Lumin 128(1):166–172. doi:10.1016/j.jlumin.2007.07.007

    Article  CAS  Google Scholar 

  24. Xia Y, Zhang T, Diao X, Zhu C (2007) Measurable emission color change: Size-dependent reversible fluorescence quenching of CdTe quantum dots by molecular oxygen. Chem Lett 36(2):242–243. doi:10.1246/cl.2007.242

    Article  CAS  Google Scholar 

  25. Zou l, Gu Z, Zhang N, Zhang Y, Fang Z, Zhu W, Zhong X (2008) Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase. J Mater Chem 18(24):2807–2815. doi:10.1039/b801418c

    Article  CAS  Google Scholar 

  26. Qu L, Yu WW, Peng X (2004) In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals. Nano Lett 4(3):465–469. doi:10.1021/nl035211r

    Article  CAS  Google Scholar 

  27. Mei YL, Wang HS, Li YF, Pan ZY, Jia WL (2010) Electochemiluminescence of CdTe/CdS Quantum Dots with Triproprylamine as Coreactant in Aqueous Solution at a Lower Potential and Its Application for Highly Sensitive and Selective Detection of Cu2+. Electroanal 22(2):155–160. doi:10.1002/elan.200904685

    Article  CAS  Google Scholar 

  28. Zheng Y, Gao S, Ying JY (2007) Synthesis and Cell-Imaging Applications of Glutathione-Capped CdTe Quantum Dots. Adv Mater 19(3):376–380. doi:10.1002/adma.200600342

    Article  CAS  Google Scholar 

  29. Lin YH, Tseng WL (2009) Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe. Chem Commun 45(43):6619–6621. doi:10.1039/b915990h

    Article  Google Scholar 

  30. http://water.epa.gov/drink/contaminants/index.cfm

  31. Zheng A, Chen J, Li H, He C, Wu G, Zhang Y, Wei H, Wu G (2009) Highly sensitive fluorescence determination of silver ions based on functionalized cadmium telluride nanorods. Microchim Acta 165(1–2):187–194. doi:10.1007/s00604-008-0119-x

    Article  CAS  Google Scholar 

  32. Wang J, Liang J, Sheng Z, Han H (2009) A novel strategy for selective detection of Ag+ based on the red-shift of emission wavelength of quantum dots. Microchim Acta 167(3–4):281–287. doi:10.1007/s00604-009-0244-1

    Article  CAS  Google Scholar 

  33. Liu ZQ, Liu SP, Yin PF, He YQ (2012) Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion. Anal Chim Acta 745:78–84. doi:10.1016/j.aca.2012.07.033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Natural Science Foundation of China (No. 21277149), Zhejiang Provincial Natural Science Foundation of China (No. LR13B050001) and the Starting Research Fund of “Team Talent” from NIMTE (No. Y20402RA03) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Zhang or Hengwei Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, H., Zhang, L., Liang, Z. et al. Size-controlled sensitivity and selectivity for the fluorometric detection of Ag+ by homocysteine capped CdTe quantum dots. Microchim Acta 181, 1393–1399 (2014). https://doi.org/10.1007/s00604-014-1276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1276-8

Keywords

Navigation