Skip to main content
Log in

Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of β-nicotinamine adenine dinucleotide (NADH) was investigated at a glassy carbon electrode modified with carbon mesoporous materials (CMM). Due to the large surface area and electro-catalytic properties of CMM, the overpotential of the electrodes toward the oxidation of NADH is decreased by 595 mV in aqueous solution at neutral pH. The anodic peak currents increase steadily with the concentration of NADH in the range from 2 µM to 1.1 mM, the detection limit being 1.0 µM at pH 7.2 and a potential of +0.3 V vs. SCE. The apparent Michaelis-Menten constant is ∼21.5 μM. The results enable NADH to be sensed at a low potential and are promising with respect to the design of dehydrogenase-based amperometric biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Katakis I, Domínguez E (1997) Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors. Microchim Acta 126:11–32

    Article  CAS  Google Scholar 

  2. Gorton L, Dominguez E (2002) Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev Mol Biotechnol 82:371–392

    Article  CAS  Google Scholar 

  3. Molroux J, Elving PJ (1978) Effects of adsorption, electrode material, and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes. Anal Chem 50:1056–1062

    Article  Google Scholar 

  4. Wang J, Angnes L, Martinez T (1992) Scanning tunneling microscopic probing of surface fouling during the oxidation of nicotinamide coenzymes. Bioelectrochem Bioenerg 29:215–221

    Article  CAS  Google Scholar 

  5. Blaedel WJ, Jenkins RA (1976) Study of a reagentless lactate electrode. Anal Chem 48:1240–1247

    Article  CAS  Google Scholar 

  6. Tse DCS, Kuwana T (1978) Electrocatalysis of dihydronicotinamide adenosine diphosphate with quinones and modified quinone electrodes. Anal Chem 50:1315–1318

    Article  CAS  Google Scholar 

  7. Pariente F, Lorenzo E, Abruna HD (1994) Electrocatalysis of NADH oxidation with electropolymerized films of 3, 4-Dihydroxybenzaldehyde. Anal Chem 66:4337–4344

    Article  CAS  Google Scholar 

  8. Zare HR, Golabi SM (1999) Electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) at a chlorogenic acid modified glassy carbon electrode. J Electroanal Chem 464:14–23

    Article  CAS  Google Scholar 

  9. Dicu D, Munteanu FD, Popeseu IC, Gorton L (2003) Indophenol and O-quinone derivatives immobilized on zirconium phosphate for NADH electro-oxidation. Anal Lett 36:1755–1779

    Article  CAS  Google Scholar 

  10. Lawrence NS, Wang J (2006) Chemical adsorption of phenothiazine dyes onto carbon nanotubes: Toward the low potential detection of NADH. Electrochem Commun 8:71–76

    Article  CAS  Google Scholar 

  11. Raj CR, Ohsaka T (2001) Electrocatalytic sensing of NADH at an in situ functionalized self-assembled monolayer on gold electrode. Electrochem Commun 3:633–638

    Article  Google Scholar 

  12. Musameh M, Wang J, Merkoci A, Lin YH (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4:743–746

    Article  CAS  Google Scholar 

  13. Chen J, Bao JC, Cai CX, Lu TH (2004) Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode. Anal Chim Acta 516:29–34

    Article  CAS  Google Scholar 

  14. Sha YF, Gao Q, Qi B, Yang XR (2004) Electropolymerization of azure B on a screen-printed carbon electrode and its application to the determination of NADH in a flow injection analysis system. Microchim Acta 148:335–341

    Article  CAS  Google Scholar 

  15. Raj CR, Chakraborty S (2006) Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing. Biosens Bioelectron 22:700–706

    Article  CAS  Google Scholar 

  16. Zhai XR, Wei WZ, Zeng JX, Gong SG, Yin J (2006) Layer-by-layer assembled film based on chitosan/carbon nanotubes, and its application to electrocatalytic oxidation of NADH. Microchim Acta 154:315–320

    Article  CAS  Google Scholar 

  17. Merkoçi A (2006) Carbon nanotubes: exciting new materials for microanalysis and sensing. Microchim Acta 152:155–156

    Article  Google Scholar 

  18. Mitsubayashi K, Nishio G, Sawai M, Kazawa E, Yoshida H, Saito T, Kudo H, Otsuka K, Takao M, Saito H (2008) A biochemical sniffer-chip for convenient analysis of gaseous formaldehyde from timber materials. Microchim Acta 160:427–433

    Article  CAS  Google Scholar 

  19. Lee J, Yoon S, Hyeon T, Oh SM, Kim KB (1999) Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem Commun 2177–2178

  20. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172

    Article  CAS  Google Scholar 

  21. Dai ZH, Lu GF, Bao JC, Huang XH, Ju HX (2007) Low potential detection of NADH at titanium-containing MCM-41 modified glassy carbon electrode. Electroanalysis 19:604–607

    Article  CAS  Google Scholar 

  22. You CP, Yan XW, Wang Y, Zhang S, Kong JL, Zhao DY, Liu BH (2009) ElectroElectrocatalytic oxidation of NADH based on bicontinuous gyroidal mesoporous carbon with low overpotential. Electrochem Commun 11:227–230

    Article  CAS  Google Scholar 

  23. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  Google Scholar 

  24. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713

    Article  CAS  Google Scholar 

  25. Luo HX, Shi ZJ, Li NQ, Gu ZN, Zhuang QK (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73:915–920

    Article  CAS  Google Scholar 

  26. Tsai YC, Tsai MC, Chiu CC (2008) Self-assembly of carbon nanotubes and alumina-coated silica nanoparticles on a glassy carbon electrode for electroanalysis. Electrochem Commun 10:749–752

    Article  CAS  Google Scholar 

  27. Deng CY, Chen JH, Chen XL, Mao CH, Nie Z, Yao SZ (2008) Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH. Electrochem Commun 10:907–909

    Article  CAS  Google Scholar 

  28. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  29. Zhou M, Guo JD, Guo LP, Bai J (2008) Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system. Anal Chem 80:4642–4650

    Article  CAS  Google Scholar 

  30. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 829–841

  31. Kamin RA, Wilson GS (1980) Rotating-ring-disk enzyme electrode for biocatalysis kinetic-studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198–1205

    Article  CAS  Google Scholar 

  32. Zhou M, Shang L, Li BB, Huang LJ, Dong SJ (2008) The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes. Electrochem Commun 10:859–863

    Article  CAS  Google Scholar 

  33. Zhang M, Smith A, Gorski W (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76:5045–5050

    Article  CAS  Google Scholar 

  34. Zhu L, Zhai J, Yang R, Tian C, Guo L (2007) Electrocatalytic oxidation of NADH with Meldola’s blue functionalized carbon nanotubes electrodes. Biosens Bioelectron 22:2768–2773

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC 20775016, Shanghai Leading Academic Discipline Project B108, B109 and Shuguang Project 06SG02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongyuan Zhao or Baohong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., You, C., Zhang, S. et al. Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes. Microchim Acta 167, 75 (2009). https://doi.org/10.1007/s00604-009-0217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-009-0217-4

Keywords

Navigation